Donal S. O’Leary
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Donal S. O’Leary.
American Journal of Physiology-heart and Circulatory Physiology | 1998
Don D. Sheriff; Robert A. Augustyniak; Donal S. O’Leary
When oxygen delivery to active muscle is too low for the ongoing rate of metabolism, metabolites accumulate and stimulate sensory nerves within the muscle leading to sympathetic activation (muscle chemoreflex). To date, studies on this reflex have focused primarily on its ability to increase arterial pressure or on the activity of the nerves that mediate this response. Clearly, a rise in cardiac output (CO) constitutes an important adjustment, because it increases the total blood flow available to be distributed among organs competing for flow. However, increments in heart rate and contractility provide limited means of raising CO because of the inverse relationship that exists between CO and right atrial pressure (RAP) in the intact circulation. Our goal was to test whether muscle chemoreflex activation, achieved via graded reductions in hindlimb blood flow by partial vascular occlusion, elicits peripheral vascular adjustments that raise RAP. In four conscious dogs exercising on a treadmill at 3.2 km/h 0% grade, RAP was well maintained during reflex activation despite increases in CO and arterial pressure that are expected to reduce RAP. Thus peripheral vascular adjustments elicited by the reflex successfully defend RAP in a setting where it would otherwise fall. To isolate the effects of the reflex on RAP, CO was maintained constant by ventricular pacing in conjunction with beta1-adrenergic blockade with atenolol. When the reflex was activated by reducing hindlimb blood flow from 0.6 to 0.3 l/min, RAP rose from 5.1 +/- 0.8 to 7.4 +/- 0.4 mmHg (P < 0.05) despite continued large (40 mmHg) increases in arterial pressure. During heavier exercise (6.4 km/h 10% grade) in five dogs with normal ventricular function, the reflex raised RAP from 5.7 +/- 0.9 to 6.6 +/- 0.8 mmHg (P < 0.05) despite increases in CO and arterial pressure. We conclude that the muscle chemoreflex is capable of eliciting substantial increases in RAP.When oxygen delivery to active muscle is too low for the ongoing rate of metabolism, metabolites accumulate and stimulate sensory nerves within the muscle leading to sympathetic activation (muscle chemoreflex). To date, studies on this reflex have focused primarily on its ability to increase arterial pressure or on the activity of the nerves that mediate this response. Clearly, a rise in cardiac output (CO) constitutes an important adjustment, because it increases the total blood flow available to be distributed among organs competing for flow. However, increments in heart rate and contractility provide limited means of raising CO because of the inverse relationship that exists between CO and right atrial pressure (RAP) in the intact circulation. Our goal was to test whether muscle chemoreflex activation, achieved via graded reductions in hindlimb blood flow by partial vascular occlusion, elicits peripheral vascular adjustments that raise RAP. In four conscious dogs exercising on a treadmill at 3.2 km/h 0% grade, RAP was well maintained during reflex activation despite increases in CO and arterial pressure that are expected to reduce RAP. Thus peripheral vascular adjustments elicited by the reflex successfully defend RAP in a setting where it would otherwise fall. To isolate the effects of the reflex on RAP, CO was maintained constant by ventricular pacing in conjunction with β1-adrenergic blockade with atenolol. When the reflex was activated by reducing hindlimb blood flow from 0.6 to 0.3 l/min, RAP rose from 5.1 ± 0.8 to 7.4 ± 0.4 mmHg ( P < 0.05) despite continued large (40 mmHg) increases in arterial pressure. During heavier exercise (6.4 km/h 10% grade) in five dogs with normal ventricular function, the reflex raised RAP from 5.7 ± 0.9 to 6.6 ± 0.8 mmHg ( P < 0.05) despite increases in CO and arterial pressure. We conclude that the muscle chemoreflex is capable of eliciting substantial increases in RAP.
American Journal of Physiology-heart and Circulatory Physiology | 1998
Donal S. O’Leary; Robert A. Augustyniak
Ischemia of active skeletal muscle stimulates neuronal afferents within the muscle, which elicits a reflex increase in systemic arterial pressure (SAP), heart rate (HR), and cardiac output (CO) termed the muscle metaboreflex. We investigated whether activation of the muscle metaboreflex elicits increases in ventricular performance using conscious, chronically instrumented dogs trained to run on a treadmill (3.2 km/h, 0% grade). The muscle metaboreflex was activated via progressive partial vascular occlusion of the terminal aorta during control experiments and with HR maintained constant via a pacemaker connected to ventricular electrodes (225 beats/min). In control experiments, hindlimb ischemia elicited substantial increases in SAP, HR, and CO (+53.9 ± 4.3 mmHg, +32.4 ± 4.5 beats/min, and +1.57 ± 0.22 l/min, respectively; all changes P < 0.05), whereas stroke volume (SV) remained unchanged with reflex activation (control 45.9 ± 2.3 vs. 46.1 ± 2.4 ml, P > 0.05). During metaboreflex activation at constant HR, SV significantly increased such that the increases in CO and SAP were not significantly different from control experiments (+1.77 ± 0.56 l/min and +57.4 ± 3.8 mmHg, P > 0.05 vs. control experiments). No significant change in central venous pressure occurred in either experiment, indicating no Frank-Starling effect on SV. We conclude that muscle metaboreflex-induced increases in ventricular contractility act to sustain SV despite decreases in ventricular filling time due to the tachycardia such that the sustained SV coupled with the tachycardia elicits substantial increases in CO that contribute importantly to the reflex increase in SAP.Ischemia of active skeletal muscle stimulates neuronal afferents within the muscle, which elicits a reflex increase in systemic arterial pressure (SAP), heart rate (HR), and cardiac output (CO) termed the muscle metaboreflex. We investigated whether activation of the muscle metaboreflex elicits increases in ventricular performance using conscious, chronically instrumented dogs trained to run on a treadmill (3.2 km/h, 0% grade). The muscle metaboreflex was activated via progressive partial vascular occlusion of the terminal aorta during control experiments and with HR maintained constant via a pacemaker connected to ventricular electrodes (225 beats/min). In control experiments, hindlimb ischemia elicited substantial increases in SAP, HR, and CO (+53.9 +/- 4.3 mmHg, +32.4 +/- 4.5 beats/min, and +1.57 +/- 0.22 l/min, respectively; all changes P < 0.05), whereas stroke volume (SV) remained unchanged with reflex activation (control 45.9 +/- 2.3 vs. 46.1 +/- 2.4 ml, P > 0.05). During metaboreflex activation at constant HR, SV significantly increased such that the increases in CO and SAP were not significantly different from control experiments (+1.77 +/- 0.56 l/min and +57.4 +/- 3.8 mmHg, P > 0.05 vs. control experiments). No significant change in central venous pressure occurred in either experiment, indicating no Frank-Starling effect on SV. We conclude that muscle metaboreflex-induced increases in ventricular contractility act to sustain SV despite decreases in ventricular filling time due to the tachycardia such that the sustained SV coupled with the tachycardia elicits substantial increases in CO that contribute importantly to the reflex increase in SAP.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998
Tadeusz J. Scislo; Robert A. Augustyniak; Donal S. O’Leary
Lumbar (LSNA), renal (RSNA), or adrenal sympathetic nerve activity (ASNA) is most commonly used as an index of sympathetic nerve activity in investigations of arterial baroreflex control in the rat. Although differential regulation of sympathetic outputs to different organs has been extensively studied, no direct and simultaneous comparisons of the full range of baroreflex reactivity have been described for these sympathetic outputs. Therefore, we compared steady-state sigmoidal baroreflex stimulus-response curves (via phenylephrine-nitroprusside infusion) for RSNA recorded simultaneously with LSNA or ASNA in urethan-chloralose-anesthetized male Sprague-Dawley rats. Characteristics of the baroreflex curves differed significantly between all three sympathetic outputs. ASNA exhibited the greatest range of baroreflex regulation, the highest upper level of activity, and the widest distribution of the gain over a broad range of mean arterial pressure (MAP). RSNA exhibited greater gain than LSNA. LSNA showed the smallest range and maximal inhibition in comparison to other sympathetic outputs. However, all three nerves responded similarly to baroreflex stimulation and unloading in the range in MAP close to the operating point. We conclude that baroreflex regulation of sympathetic activity shows wide regional variability in gain, range, and maximal inhibition. Therefore, the entire stimulus-response relationship should be considered in comparing regional sympathetic responses.Lumbar (LSNA), renal (RSNA), or adrenal sympathetic nerve activity (ASNA) is most commonly used as an index of sympathetic nerve activity in investigations of arterial baroreflex control in the rat. Although differential regulation of sympathetic outputs to different organs has been extensively studied, no direct and simultaneous comparisons of the full range of baroreflex reactivity have been described for these sympathetic outputs. Therefore, we compared steady-state sigmoidal baroreflex stimulus-response curves (via phenylephrine-nitroprusside infusion) for RSNA recorded simultaneously with LSNA or ASNA in urethan-chloralose-anesthetized male Sprague-Dawley rats. Characteristics of the baroreflex curves differed significantly between all three sympathetic outputs. ASNA exhibited the greatest range of baroreflex regulation, the highest upper level of activity, and the widest distribution of the gain over a broad range of mean arterial pressure (MAP). RSNA exhibited greater gain than LSNA. LSNA showed the smallest range and maximal inhibition in comparison to other sympathetic outputs. However, all three nerves responded similarly to baroreflex stimulation and unloading in the range in MAP close to the operating point. We conclude that baroreflex regulation of sympathetic activity shows wide regional variability in gain, range, and maximal inhibition. Therefore, the entire stimulus-response relationship should be considered in comparing regional sympathetic responses.
American Journal of Physiology-heart and Circulatory Physiology | 1999
Donal S. O’Leary; Robert A. Augustyniak; Eric J. Ansorge; Heidi L. Collins
Ischemia of active skeletal muscle elicits a powerful pressor response, termed the muscle metaboreflex. We recently reported that the muscle metaboreflex pressor response acts to partially restore blood flow to the ischemic active skeletal muscle. However, because this reflex is activated by reductions in O2 delivery rather than blood flow per se, gain of the muscle metaboreflex as analyzed on the basis of blood flow alone may underestimate its true strength if this reflex also acts to increase arterial O2 content. In conscious dogs chronically instrumented to measure systemic arterial pressure, cardiac output, and hindlimb blood flow, we activated the muscle metaboreflex via graded, partial reductions in hindlimb blood flow during mild (3.2 km/h) and moderate (6.4 km/h, 10% grade) workloads. At rest, during free-flow exercise, and with metaboreflex activation, we analyzed arterial blood samples for Hb concentration and O2 content and compared muscle metaboreflex gain calculations based on the ability to partially restore flow with those based on the ability to partially restore O2 delivery (blood flow x arterial O2 content). During both mild and moderate exercise, metaboreflex activation caused significant increases in arterial Hb concentration and O2 content. Metaboreflex gain quantified on the ability to partially restore O2 delivery was significantly greater than that based on restoration of blood flow during both mild and moderate workloads (0.52 +/- 0.10 vs. 0.39 +/- 0.08, P < 0.05, and 0.61 +/- 0. 05 vs. 0.46 +/- 0.04, P < 0.05, respectively). We conclude that the muscle metaboreflex acts to increase both arterial O2 content and blood flow to ischemic muscle such that when combined, O2 delivery is substantially increased and metaboreflex gain is greater when analyzed with a more integrative approach.Ischemia of active skeletal muscle elicits a powerful pressor response, termed the muscle metaboreflex. We recently reported that the muscle metaboreflex pressor response acts to partially restore blood flow to the ischemic active skeletal muscle. However, because this reflex is activated by reductions in O2 delivery rather than blood flow per se, gain of the muscle metaboreflex as analyzed on the basis of blood flow alone may underestimate its true strength if this reflex also acts to increase arterial O2content. In conscious dogs chronically instrumented to measure systemic arterial pressure, cardiac output, and hindlimb blood flow, we activated the muscle metaboreflex via graded, partial reductions in hindlimb blood flow during mild (3.2 km/h) and moderate (6.4 km/h, 10% grade) workloads. At rest, during free-flow exercise, and with metaboreflex activation, we analyzed arterial blood samples for Hb concentration and O2 content and compared muscle metaboreflex gain calculations based on the ability to partially restore flow with those based on the ability to partially restore O2 delivery (blood flow × arterial O2 content). During both mild and moderate exercise, metaboreflex activation caused significant increases in arterial Hb concentration and O2 content. Metaboreflex gain quantified on the ability to partially restore O2 delivery was significantly greater than that based on restoration of blood flow during both mild and moderate workloads (0.52 ± 0.10 vs. 0.39 ± 0.08, P < 0.05, and 0.61 ± 0.05 vs. 0.46 ± 0.04, P < 0.05, respectively). We conclude that the muscle metaboreflex acts to increase both arterial O2 content and blood flow to ischemic muscle such that when combined, O2 delivery is substantially increased and metaboreflex gain is greater when analyzed with a more integrative approach.
American Journal of Physiology-heart and Circulatory Physiology | 1998
Tadeusz J. Scislo; Donal S. O’Leary
Activation of adenosine A2a and ATP P2x purinoceptors in the subpostremal nucleus tractus solitarii (NTS) via microinjection of the selective agonists CGS-21680 and α,β-methylene ATP (α,β-MeATP), respectively, elicits large dose-dependent decreases in arterial pressure and heart rate, differential regional vasodilation, and differential inhibition of regional sympathetic outputs. With marked hypotensive hemorrhage, preganglionic adrenal sympathetic nerve activity (pre-ASNA) increases, whereas renal (RSNA) and postganglionic adrenal sympathetic nerve activity (post-ASNA) decrease. In this setting, adenosine levels in the brain stem increase. Therefore, we investigated whether stimulation of specific purinoceptors in the NTS may evoke differential sympathetic responses. RSNA was recorded simultaneously with pre-ASNA or post-ASNA in chloralose-urethan-anesthetized male Sprague-Dawley rats. CGS-21680 (2 and 20 pmol in 50 nl) inhibited RSNA and post-ASNA, whereas pre-ASNA increased markedly. α,β-MeATP (25 and 100 pmol in 50 nl) inhibited all sympathetic outputs. Sinoaortic denervation plus vagotomy markedly prolonged the responses to P2x-purinoceptor stimulation. Glutamate (100 pmol in 50 nl) caused differential inhibition of all sympathetic outputs similar to that evoked by α,β-MeATP. We conclude that NTS A2a-purinoceptor activation evokes differential sympathetic responses similar to those observed during hemorrhage, whereas P2x-purinoceptor and glutamate-receptor activation evokes differential inhibition of sympathetic outputs similar to arterial baroreflex responses.
Brain Research Bulletin | 1998
Tadeusz J. Scislo; Erhan Ergene; Donal S. O’Leary
Activation of P2x-purinoceptors in the nucleus tractus solitarius (NTS) via microinjection of ATP mimics baroreflex responses (bradycardia, hypotension); however, the physiological role of these receptors in cardiovascular control remains unclear. We tested whether blockade of these receptors attenuates arterial baroreflex control of heart rate (HR). Baroreflex-induced changes in HR (via graded i.v. infusion of phenylephrine and nitroprusside) were observed in seven alpha-chloralose/urethane anesthetized male Sprague-Dawley rats before and after microinjection of the purinergic P2 receptor antagonist suramin (0.5 nmol in 50 nL) into the subpostremal NTS. Before suramin, typical baroreflex changes in HR were observed (maximum gain, Gmax = 2.94 +/- 0.54 bpm/mmHg). Suramin markedly impaired baroreflex-induced changes in HR (gain = 0.02 +/- 0.08 and 0.18 +/- 0.09 bpm/mmHg for increases and decreases in mean arterial blood pressure, respectively); however, after 90-130 min, HR and baroreflex reactivity returned to control levels. Microinjections of vehicle into the same area did not alter baroreflex function. In addition, suramin did not alter the depressor responses to microinjections of glutamate into the same site of the NTS. We conclude that normal P2x-purinoceptor function in subpostremal NTS may be necessary for baroreflex regulation of HR.
American Journal of Physiology-heart and Circulatory Physiology | 2015
Marty D. Spranger; Abhinav C. Krishnan; Phillip D. Levy; Donal S. O’Leary; Scott A. Smith
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional.
American Journal of Physiology-heart and Circulatory Physiology | 1997
Donal S. O’Leary; Noreen F. Rossi; Paul C. Churchill
We investigated the extent of functional parasympathetic and sympathetic activity to the heart at rest and during mild to heavy dynamic exercise in conscious dogs. The animals were chronically instrumented to monitor mean arterial pressure (MAP), heart rate (HR), and terminal aortic blood flow (TAQ) and trained to run on a motor-driven treadmill. MAP, HR, and TAQ were monitored at rest and during steady-state dynamic exercise ranging from mild [3.2 kilometers per hour (kph), 0% grade] to heavy exercise (8 kph, 15% grade). Experiments were performed before and after blocking the effects of either the parasympathetic nerves (atropine 0.2 mg/kg iv) or sympathetic nerves (atenolol 2.0 mg/kg iv) to the heart. In addition, blood samples were taken at rest and at steady state during exercise, and plasma levels of vasopressin and renin activity were assessed. At rest and during all levels of exercise, muscarinic cholinergic receptor blockade caused a marked increase in HR over control (saline treated) levels with little effect on MAP or TAQ. β-Adrenergic receptor blockade had no significant effect on HR at rest and during mild exercise. At moderate to heavy workloads, β-receptor blockade significantly reduced MAP, HR, and TAQ and increased plasma vasopressin levels. We conclude that, even during heavy dynamic exercise, significant functional parasympathetic tone to the heart exists. Thus, over a wide range of exercise workloads, HR is under the tonic control of both sympathetic and parasympathetic nerves.
Archive | 1991
Allen M. Scher; Donal S. O’Leary; Don D. Sheriff
The arterial baroreceptor reflexes act to maintain arterial pressure constant at a set point or operating point. The operating point is determined by the mean arterial pressure and by the arterial pulse pressure. In resting man or resting experimental animals, it is the pressure when there are no obvious internal or external stresses or perturbations which might alter the pressure. The set point may vary with state, as in exercise or rest, or with emotional stress. Over the short term, the reflex operates to minimize changes from the set point which might occur with such stresses as blood loss or positional changes. The set point appears to be altered during exercise, but newer information indicates that the reflex functions much as it does at rest [169]. (See also the review by Ludbrook [133] and the chapter by Joyner and Shepherd in this volume.) Loss of these reflexes impairs or may even destroy the ability to respond properly to some external stimuli or to disease states. (See chapter on heart failure by Thames and Dibner-Dunlap in this volume.)
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1999
Susanne L. Laprad; Robert A. Augustyniak; Robert L. Hammond; Donal S. O’Leary
Ischemia of active skeletal muscle stimulates neuronal afferents within the muscle, which elicits a reflex increase in sympathetic nerve activity, systemic arterial pressure (SAP), and heart rate (HR), termed the muscle metaboreflex. We retrospectively investigated whether gender influences the activation of the muscle metaboreflex and the primary mechanisms used by this reflex, augmentation of cardiac output (CO) and peripheral vasoconstriction, using 15 female and 13 male chronically instrumented dogs exercising on a treadmill (3.2 km/h, 0% grade). Metaboreflex activation was achieved via progressive partial vascular occlusion of the terminal aorta during exercise. In both females and males, hindlimb ischemia elicited similar substantial increases in SAP (56.1 +/- 3.0 and 55.1 +/- 4.2 mmHg, respectively), HR (25.8 +/- 4.8 and 33.9 +/- 2.8 beats/min, respectively), and CO (1.39 +/- 0.3 and 1.64 +/- 0.2 liters, respectively) and a similar substantial decrease in renal vascular conductance (RVC; 42.7 +/- 4.9 and 42.9 +/- 5.3%, respectively). Both groups also demonstrated similar metaboreflex thresholds and sensitivities of SAP, HR, CO, and RVC. We conclude that the strength and mechanisms mediating the metaboreflex responses during dynamic exercise in dogs are not affected by gender.Ischemia of active skeletal muscle stimulates neuronal afferents within the muscle, which elicits a reflex increase in sympathetic nerve activity, systemic arterial pressure (SAP), and heart rate (HR), termed the muscle metaboreflex. We retrospectively investigated whether gender influences the activation of the muscle metaboreflex and the primary mechanisms used by this reflex, augmentation of cardiac output (CO) and peripheral vasoconstriction, using 15 female and 13 male chronically instrumented dogs exercising on a treadmill (3.2 km/h, 0% grade). Metaboreflex activation was achieved via progressive partial vascular occlusion of the terminal aorta during exercise. In both females and males, hindlimb ischemia elicited similar substantial increases in SAP (56.1 ± 3.0 and 55.1 ± 4.2 mmHg, respectively), HR (25.8 ± 4.8 and 33.9 ± 2.8 beats/min, respectively), and CO (1.39 ± 0.3 and 1.64 ± 0.2 liters, respectively) and a similar substantial decrease in renal vascular conductance (RVC; 42.7 ± 4.9 and 42.9 ± 5.3%, respectively). Both groups also demonstrated similar metaboreflex thresholds and sensitivities of SAP, HR, CO, and RVC. We conclude that the strength and mechanisms mediating the metaboreflex responses during dynamic exercise in dogs are not affected by gender.