Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Ann Tuli is active.

Publication


Featured researches published by Mary Ann Tuli.


Nucleic Acids Research | 2004

The EMBL Nucleotide Sequence Database

Tamara Kulikova; Philippe Aldebert; Nicola Althorpe; Wendy Baker; Kirsty Bates; Paul Browne; Alexandra van den Broek; Guy Cochrane; Karyn Duggan; Ruth Y. Eberhardt; Nadeem Faruque; Maria Garcia-Pastor; Nicola Harte; Carola Kanz; Rasko Leinonen; Quan Lin; Vincent Lombard; Rodrigo Lopez; Renato Mancuso; Michelle McHale; Francesco Nardone; Ville Silventoinen; Peter Stoehr; Guenter Stoesser; Mary Ann Tuli; Katerina Tzouvara; Robert Vaughan; Dan Wu; Weimin Zhu; Rolf Apweiler

The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl), maintained at the European Bioinformatics Institute (EBI) near Cambridge, UK, is a comprehensive collection of nucleotide sequences and annotation from available public sources. The database is part of an international collaboration with DDBJ (Japan) and GenBank (USA). Data are exchanged daily between the collaborating institutes to achieve swift synchrony. Webin is the preferred tool for individual submissions of nucleotide sequences, including Third Party Annotation (TPA) and alignments. Automated procedures are provided for submissions from large-scale sequencing projects and data from the European Patent Office. New and updated data records are distributed daily and the whole EMBL Nucleotide Sequence Database is released four times a year. Access to the sequence data is provided via ftp and several WWW interfaces. With the web-based Sequence Retrieval System (SRS) it is also possible to link nucleotide data to other specialist molecular biology databases maintained at the EBI. Other tools are available for sequence similarity searching (e.g. FASTA and BLAST). Changes over the past year include the removal of the sequence length limit, the launch of the EMBLCDSs dataset, extension of the Sequence Version Archive functionality and the revision of quality rules for TPA data.


Nucleic Acids Research | 2010

WormBase: a comprehensive resource for nematode research

Todd W. Harris; Igor Antoshechkin; Tamberlyn Bieri; Darin Blasiar; Juancarlos Chan; Wen J. Chen; Norie De La Cruz; Paul H. Davis; Margaret Duesbury; Ruihua Fang; Jolene S. Fernandes; Michael Han; Ranjana Kishore; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Andrei Petcherski; Arun Rangarajan; Anthony Rogers; Gary Schindelman; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Karen Yook; Richard Durbin; Lincoln Stein

WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base.


Nucleic Acids Research | 2012

WormBase 2012: more genomes, more data, new website

Karen Yook; Todd W. Harris; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; Norie De La Cruz; Adrian Duong; Ruihua Fang; Uma Ganesan; Christian A. Grove; Kevin L. Howe; Snehalata Kadam; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Bill Nash; Philip Ozersky; Michael Paulini; Daniela Raciti; Arun Rangarajan; Gary Schindelman; Xiaoqi Shi; Erich M. Schwarz; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.


Nucleic Acids Research | 2014

Ensembl Genomes 2013: scaling up access to genome-wide data

Paul J. Kersey; James E. Allen; Mikkel Christensen; Paul Davis; Lee J. Falin; Christoph Grabmueller; Daniel Seth Toney Hughes; Jay Humphrey; Arnaud Kerhornou; Julia Khobova; Nicholas Langridge; Mark D. McDowall; Uma Maheswari; Gareth Maslen; Michael Nuhn; Chuang Kee Ong; Michael Paulini; Helder Pedro; Iliana Toneva; Mary Ann Tuli; Brandon Walts; Gareth Williams; Derek Wilson; Ken Youens-Clark; Marcela K. Monaco; Joshua C. Stein; Xuehong Wei; Doreen Ware; Daniel M. Bolser; Kevin L. Howe

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.


Nucleic Acids Research | 2014

WormBase 2014: new views of curated biology

Todd W. Harris; Joachim Baran; Tamberlyn Bieri; Abigail Cabunoc; Juancarlos Chan; Wen J. Chen; Paul H. Davis; James Done; Christian A. Grove; Kevin L. Howe; Ranjana Kishore; Raymond Y. N. Lee; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Philip Ozersky; Michael Paulini; Daniela Raciti; Gary Schindelman; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Jennifer Wong; Karen Yook; Tim Schedl; Jonathan Hodgkin; Matthew Berriman; Paul J. Kersey

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Nucleic Acids Research | 2016

WormBase 2016: expanding to enable helminth genomic research

Kevin L. Howe; Bruce J. Bolt; Scott Cain; Juancarlos Chan; Wen J. Chen; Paul Davis; James Done; Thomas A. Down; Sibyl Gao; Christian A. Grove; Todd W. Harris; Ranjana Kishore; Raymond Y. N. Lee; Jane Lomax; Yuling Li; Hans-Michael Müller; Cecilia Nakamura; Paulo A. S. Nuin; Michael Paulini; Daniela Raciti; Gary Schindelman; Eleanor Stanley; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams; Adam Wright; Karen Yook; Matthew Berriman

WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research.


Nucleic Acids Research | 2003

The EMBL Nucleotide Sequence Database: major new developments

Guenter Stoesser; Wendy Baker; Alexandra van den Broek; Maria Garcia-Pastor; Carola Kanz; Tamara Kulikova; Rasko Leinonen; Quan Lin; Vincent Lombard; Rodrigo Lopez; Renato Mancuso; Francesco Nardone; Peter Stoehr; Mary Ann Tuli; Katerina Tzouvara; Robert Vaughan

The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) incorporates, organizes and distributes nucleotide sequences from all available public sources. The database is located and maintained at the European Bioinformatics Institute (EBI) near Cambridge, UK. In an international collaboration with DDBJ (Japan) and GenBank (USA), data are exchanged amongst the collaborating databases on a daily basis to achieve optimal synchronization. Webin is the preferred web-based submission system for individual submitters, while automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO). Database releases are produced quarterly. Network services allow free access to the most up-to-date data collection via FTP, Email and World Wide Web interfaces. EBIs Sequence Retrieval System (SRS) integrates and links the main nucleotide and protein databases plus many other specialized molecular biology databases. For sequence similarity searching, a variety of tools (e.g. Fasta, BLAST) are available which allow external users to compare their own sequences against the latest data in the EMBL Nucleotide Sequence Database and SWISS-PROT. All resources can be accessed via the EBI home page at http://www.ebi.ac.uk.


Nucleic Acids Research | 2007

WormBase: new content and better access

Tamberlyn Bieri; Darin Blasiar; Philip Ozersky; Igor Antoshechkin; Carol Bastiani; Payan Canaran; Juancarlos Chan; Nansheng Chen; Wen J. Chen; Paul Davis; Tristan J. Fiedler; Lisa R. Girard; Michael Han; Todd W. Harris; Ranjana Kishore; Raymond Y. N. Lee; Sheldon J. McKay; Hans-Michael Müller; Cecilia Nakamura; Andrei Petcherski; Arun Rangarajan; Anthony Rogers; Gary Schindelman; Erich M. Schwarz; William Spooner; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Xiaodong Wang; Gary Williams

WormBase (), a model organism database for Caenorhabditis elegans and other related nematodes, continues to evolve and expand. Over the past year WormBase has added new data on C.elegans, including data on classical genetics, cell biology and functional genomics; expanded the annotation of closely related nematodes with a new genome browser for Caenorhabditis remanei; and deployed new hardware for stronger performance. Several existing datasets including phenotype descriptions and RNAi experiments have seen a large increase in new content. New datasets such as the C.remanei draft assembly and annotations, the Vancouver Fosmid library and TEC-RED 5′ end sites are now available as well. Access to and searching WormBase has become more dependable and flexible via multiple mirror sites and indexing through Google.


Nucleic Acids Research | 2006

WormBase: better software, richer content

Erich M. Schwarz; Igor Antoshechkin; Carol Bastiani; Tamberlyn Bieri; Darin Blasiar; Payan Canaran; Juancarlos Chan; Nansheng Chen; Wen J. Chen; Paul Davis; Tristan J. Fiedler; Lisa-Christine Girard; Todd W. Harris; Eimear E. Kenny; Ranjana Kishore; Dan Lawson; Raymond Y. N. Lee; Hans-Michael Müller; Cecilia Nakamura; Phil Ozersky; Andrei Petcherski; Anthony Rogers; Will Spooner; Mary Ann Tuli; Kimberly Van Auken; Daniel Wang; Richard Durbin; John Spieth; Lincoln Stein; Paul W. Sternberg

WormBase (), the public database for genomics and biology of Caenorhabditis elegans, has been restructured for stronger performance and expanded for richer biological content. Performance was improved by accelerating the loading of central data pages such as the omnibus Gene page, by rationalizing internal data structures and software for greater portability, and by making the Genome Browser highly customizable in how it views and exports genomic subsequences. Arbitrarily complex, user-specified queries are now possible through Textpresso (for all available literature) and through WormMart (for most genomic data). Biological content was enriched by reconciling all available cDNA and expressed sequence tag data with gene predictions, clarifying single nucleotide polymorphism and RNAi sites, and summarizing known functions for most genes studied in this organism.


BMC Bioinformatics | 2012

Automatic categorization of diverse experimental information in the bioscience literature

Ruihua Fang; Gary Schindelman; Kimberly Van Auken; Jolene S. Fernandes; Wen Chen; Xiaodong Wang; Paul Davis; Mary Ann Tuli; Steven J. Marygold; Gillian Millburn; Beverley B. Matthews; Haiyan Zhang; Nicholas H. Brown; William M. Gelbart; Paul W. Sternberg

BackgroundCuration of information from bioscience literature into biological knowledge databases is a crucial way of capturing experimental information in a computable form. During the biocuration process, a critical first step is to identify from all published literature the papers that contain results for a specific data type the curator is interested in annotating. This step normally requires curators to manually examine many papers to ascertain which few contain information of interest and thus, is usually time consuming. We developed an automatic method for identifying papers containing these curation data types among a large pool of published scientific papers based on the machine learning method Support Vector Machine (SVM). This classification system is completely automatic and can be readily applied to diverse experimental data types. It has been in use in production for automatic categorization of 10 different experimental datatypes in the biocuration process at WormBase for the past two years and it is in the process of being adopted in the biocuration process at FlyBase and the Saccharomyces Genome Database (SGD). We anticipate that this method can be readily adopted by various databases in the biocuration community and thereby greatly reducing time spent on an otherwise laborious and demanding task. We also developed a simple, readily automated procedure to utilize training papers of similar data types from different bodies of literature such as C. elegans and D. melanogaster to identify papers with any of these data types for a single database. This approach has great significance because for some data types, especially those of low occurrence, a single corpus often does not have enough training papers to achieve satisfactory performance.ResultsWe successfully tested the method on ten data types from WormBase, fifteen data types from FlyBase and three data types from Mouse Genomics Informatics (MGI). It is being used in the curation work flow at WormBase for automatic association of newly published papers with ten data types including RNAi, antibody, phenotype, gene regulation, mutant allele sequence, gene expression, gene product interaction, overexpression phenotype, gene interaction, and gene structure correction.ConclusionsOur methods are applicable to a variety of data types with training set containing several hundreds to a few thousand documents. It is completely automatic and, thus can be readily incorporated to different workflow at different literature-based databases. We believe that the work presented here can contribute greatly to the tremendous task of automating the important yet labor-intensive biocuration effort.

Collaboration


Dive into the Mary Ann Tuli's collaboration.

Top Co-Authors

Avatar

Michael Paulini

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Paul Davis

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Kimberly Van Auken

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gary Williams

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Kevin L. Howe

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Ranjana Kishore

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Raymond Y. N. Lee

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Todd W. Harris

Cold Spring Harbor Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wen J. Chen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Cecilia Nakamura

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge