Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary C. Whitman is active.

Publication


Featured researches published by Mary C. Whitman.


The Journal of Neuroscience | 2007

Dynamic Contribution of Nestin-Expressing Stem Cells to Adult Neurogenesis

Diane C. Lagace; Mary C. Whitman; Michele A. Noonan; Jessica L. Ables; Nathan A. DeCarolis; Amy A. Arguello; Michael H. Donovan; Stephanie J. Fischer; Laure A. Farnbauch; Robert D. Beech; Ralph J. DiLeone; Charles A. Greer; Chitra D. Mandyam; Amelia J. Eisch

Understanding the fate of adult-generated neurons and the mechanisms that influence them requires consistent labeling and tracking of large numbers of stem cells. We generated a nestin-CreERT2/R26R-yellow fluorescent protein (YFP) mouse to inducibly label nestin-expressing stem cells and their progeny in the adult subventricular zone (SVZ) and subgranular zone (SGZ). Several findings show that the estrogen ligand tamoxifen (TAM) specifically induced recombination in stem cells and their progeny in nestin-CreERT2/R26R-YFP mice: 97% of SGZ stem-like cells (GFAP/Sox2 with radial glial morphology) expressed YFP; YFP+ neurospheres could be generated in vitro after recombination in vivo, and maturing YFP+ progeny were increasingly evident in the olfactory bulb (OB) and dentate gyrus (DG) granule cell layer. Revealing an unexpected regional dissimilarity in adult neurogenesis, YFP+ cells accumulated up to 100 d after TAM in the OB, but in the SGZ, YFP+ cells reached a plateau 30 d after TAM. In addition, most SVZ and SGZ YFP+ cells became neurons, underscoring a link between nestin and neuronal fate. Finally, quantification of YFP+ cells in nestin-CreERT2/R26R-YFP mice allowed us to estimate, for example, that stem cells and their progeny contribute to no more than 1% of the adult DG granule cell layer. In addition to revealing the dynamic contribution of nestin-expressing stem cells to adult neurogenesis, this work highlights the utility of the nestin-CreERT2/R26R-YFP mouse for inducible gene ablation in stem cells and their progeny in vivo in the two major regions of adult neurogenesis.


Progress in Neurobiology | 2009

Adult Neurogenesis and the Olfactory System

Mary C. Whitman; Charles A. Greer

Though initially described in the early 1960s, it is only within the past decade that the concept of continuing adult neurogenesis has gained widespread acceptance. Neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) into the olfactory bulb, where they differentiate into interneurons. Neuroblasts from the subgranular zone (SGZ) of the hippocampal formation show relatively little migratory behavior, and differentiate into dentate gyrus granule cells. In sharp contrast to embryonic and perinatal development, these newly differentiated neurons must integrate into a fully functional circuit, without disrupting ongoing performance. Here, after a brief historical overview and introduction to olfactory circuitry, we review recent advances in the biology of neural stem cells, mechanisms of migration in the RMS and olfactory bulb, differentiation and survival of new neurons, and finally mechanisms of synaptic integration. Our primary focus is on the olfactory system, but we also contrast the events occurring there with those in the hippocampal formation. Although both SVZ and SGZ neurogenesis are involved in some types of learning, their full functional significance remains unclear. Since both systems offer models of integration of new neuroblasts, there is immense interest in using neural stem cells to replace neurons lost in injury or disease. Though many questions remain unanswered, new insights appear daily about adult neurogenesis, regulatory mechanisms, and the fates of the progeny. We discuss here some of the central features of these advances, as well as speculate on future research directions.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Disulfide bond-mediated dimerization of HLA-G on the cell surface

Jonathan E. Boyson; Robert A. Erskine; Mary C. Whitman; Michael Chiu; Julie M. Lau; Louise A. Koopman; Markus M. Valter; Pavla Angelisová; Vaclav Horejsi; Jack L. Strominger

HLA-G is a nonclassical class I MHC molecule with an unknown function and with unusual characteristics that distinguish it from other class I MHC molecules. Here, we demonstrate that HLA-G forms disulfide-linked dimers that are present on the cell surface. Immunoprecipitation of HLA-G from surface biotinylated transfectants using the anti-β2-microglobulin mAb BBM.1 revealed the presence of an ≈78-kDa form of HLA-G heavy chain that was reduced by using DTT to a 39-kDa form. Mutation of Cys-42 to a serine completely abrogated dimerization of HLA-G, suggesting that the disulfide linkage formed exclusively through this residue. A possible interaction between the HLA-G monomer or dimer and the KIR2DL4 receptor was also investigated, but no interaction between these molecules could be detected through several approaches. The cell-surface expression of dimerized HLA-G molecules may have implications for HLA-G/receptor interactions and for the search for specific receptors that bind HLA-G.


The Journal of Neuroscience | 2007

Synaptic Integration of Adult-Generated Olfactory Bulb Granule Cells: Basal Axodendritic Centrifugal Input Precedes Apical Dendrodendritic Local Circuits

Mary C. Whitman; Charles A. Greer

The adult mammalian olfactory bulb (OB) receives a continuing influx of new interneurons. Neuroblasts from the subventricular zone (SVZ) migrate into the OB and differentiate into granule cells and periglomerular cells that are presumed to integrate into the synaptic circuits of the OB. We have used retroviral infection into the SVZ of mice to label adult-generated granule cells and follow their differentiation and integration into OB circuitry. Using synaptic markers and electron microscopy, we show new granule cells integrating into the reciprocal circuitry of the external plexiform layer (EPL), beginning at 21 d postinfection (dpi). We further show that synapses are formed earlier, beginning at 10 dpi, on the somata and basal dendrites of new cells in the granule cell layer (GCL), before dendritic elaboration in the EPL. In the EPL, elaborate dendritic arbors with spines are first evident at 14 dpi. The density of spines increases from 14 to 28 dpi, and then decreases by 56 dpi. Despite the initial appearance of dendritic spines at 14 dpi in the EPL, no expression of presynaptic or postsynaptic markers is seen until 21 dpi. These data suggest that adult-generated granule cells are first innervated by centrifugal or mitral/tufted cell axon collaterals in the GCL and that these inputs may contribute to their differentiation, maturation, and synaptic integration into the dendrodendritic local circuits found in the EPL.


The Journal of Comparative Neurology | 2009

Blood vessels form a migratory scaffold in the rostral migratory stream

Mary C. Whitman; Wen Fan; Lorena Rela; Diego J. Rodriguez-Gil; Charles A. Greer

In adult mice, new neurons born in the subventricular zone (SVZ), lining the lateral ventricles, migrate tangentially into the olfactory bulb along a well‐delineated path, the rostral migratory stream (RMS). Neuroblasts in the RMS migrate tangentially in chains, without a recognized migratory scaffold. Here we quantitatively examine the distribution of, and relationships between, cells within the RMS, throughout its rostral‐caudal extent. We show that there is a higher density of blood vessels in the RMS than in other brain regions, including areas with equal cell density, and that the orientation of blood vessels parallels the RMS throughout the caudal to rostral path. Of particular interest, migratory neuroblast chains are longitudinally aligned along blood vessels within the RMS, with over 80% of vessel length in rostral areas of the RMS apposed by neuroblasts. Electron micrographs show direct contact between endothelial cells and neuroblasts, although intervening astrocytic processes are often present. Within the RMS, astrocytes arborize extensively, extending long processes that are parallel to blood vessels and the direction of neuroblast migration. Thus, the astrocytic processes establish a longitudinal alignment within the RMS, rather than a more typical stellate shape. This complementary alignment suggests that blood vessels and astrocytes may cooperatively establish a scaffold for migrating neuroblasts, as well as provide and regulate migratory cues. J. Comp. Neurol. 513:94–104, 2009.


PLOS ONE | 2008

Principles of Glomerular Organization in the Human Olfactory Bulb – Implications for Odor Processing

Alison Maresh; Diego Rodriguez Gil; Mary C. Whitman; Charles A. Greer

Olfactory sensory neurons (OSN) in mice express only 1 of a possible 1,100 odor receptors (OR) and axons from OSNs expressing the same odor receptor converge into ∼2 of the 1,800 glomeruli in each olfactory bulb (OB) in mice; this yields a convergence ratio that approximates 2∶1, 2 glomeruli/OR. Because humans express only 350 intact ORs, we examined human OBs to determine if the glomerular convergence ratio of 2∶1 established in mice was applicable to humans. Unexpectedly, the average number of human OB glomeruli is >5,500 yielding a convergence ratio of ∼16∶1. The data suggest that the initial coding of odor information in the human OB may differ from the models developed for rodents and that recruitment of additional glomeruli for subpopulations of ORs may contribute to more robust odor representation.


Molecular and Cellular Neuroscience | 2005

A unique subpopulation of Tbr1-expressing deep layer neurons in the developing cerebral cortex.

Sharon M. Kolk; Mary C. Whitman; Mihae E. Yun; Priya B. Shete; Maria J. Donoghue

Cells of the subplate (SP) and deep cortical plate (CP) are among the pioneer neurons of the developing cerebral cortex, an important group of early-born cells that impact cortical organization and function. Similarities between pioneer neurons in different cortical positions and heterogeneities in pioneer cells in the same cortical location, however, have made it difficult to appreciate the characteristics and functions of particular sets of these cells. Here, we provide a tool to illuminate a unique subset of SP and deep CP neurons: expression of a Tbrain-1 (Tbr1)-driven transgene. Transgene-expressing cells were consistently positive for neuronal but not glial markers, were born early in corticogenesis, representing just a subset of SP and deep CP neurons, were morphologically complex during the formation of the cortex, and were maintained into maturity. This analysis reveals a novel group of pioneer neurons and demonstrates unrecognized diversity within this cortical population. In the future, this information will help to uncover the roles of discrete pioneer populations in cortical development.


American Journal of Medical Genetics Part A | 2016

Two unique TUBB3 mutations cause both CFEOM3 and malformations of cortical development.

Mary C. Whitman; Caroline Andrews; Wai-Man Chan; Max A. Tischfield; Steven F. Stasheff; Francesco Brancati; Xilma R. Ortiz-Gonzalez; Sara Nuovo; Francesco Garaci; Sarah MacKinnon; David G. Hunter; P. Ellen Grant; Elizabeth C. Engle

One set of missense mutations in the neuron specific beta tubulin isotype 3 (TUBB3) has been reported to cause malformations of cortical development (MCD), while a second set has been reported to cause isolated or syndromic Congenital Fibrosis of the Extraocular Muscles type 3 (CFEOM3). Because TUBB3 mutations reported to cause CFEOM had not been associated with cortical malformations, while mutations reported to cause MCD had not been associated with CFEOM or other forms of paralytic strabismus, it was hypothesized that each set of mutations might alter microtubule function differently. Here, however, we report two novel de novo heterozygous TUBB3 amino acid substitutions, G71R and G98S, in four patients with both MCD and syndromic CFEOM3. These patients present with moderately severe CFEOM3, nystagmus, torticollis, and developmental delay, and have intellectual and social disabilities. Neuroimaging reveals defective cortical gyration, as well as hypoplasia or agenesis of the corpus callosum and anterior commissure, malformations of hippocampi, thalami, basal ganglia and cerebella, and brainstem and cranial nerve hypoplasia. These new TUBB3 substitutions meld the two previously distinct TUBB3‐associated phenotypes, and implicate similar microtubule dysfunction underlying both.


Seminars in Ophthalmology | 2014

Complications of Pediatric Cataract Surgery

Mary C. Whitman; Deborah K. VanderVeen

Abstract Purpose: Cataract surgery in young children poses different challenges and potential complications compared to those encountered in adult populations. We performed a literature review of the complications of pediatric cataract surgery. Methods: Literature review of complications of pediatric cataract surgery. Results: Complications in children vary based on the age of the patient at surgery and the cause of the cataract. Common events discussed include increased inflammatory response, opacification of the posterior capsule, lens reproliferation, pupillary membrane, and amblyopia; less common events include infections, significant bleeding, and retinal detachment. Conclusion: Complications after cataract surgery in children are often associated with a robust inflammatory reaction or secondary opacity and, in infants, glaucoma. Late complications can occur decades later, so that long-term follow-up is required. Though surgery carries significant risks, the consequences of no surgery and irreversible deprivation amblyopia in very young children should be considered.


Human Molecular Genetics | 2017

Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance

Mary C. Whitman; Elizabeth C. Engle

Unraveling the genetics of the paralytic strabismus syndromes known as congenital cranial dysinnervation disorders (CCDDs) is both informing physicians and their patients and broadening our understanding of development of the ocular motor system. Genetic mutations underlying ocular CCDDs alter either motor neuron specification or motor nerve development, and highlight the importance of modulations of cell signaling, cytoskeletal transport, and microtubule dynamics for axon growth and guidance. Here we review recent advances in our understanding of two CCDDs, congenital fibrosis of the extraocular muscles (CFEOM) and Duane retraction syndrome (DRS), and discuss what they have taught us about mechanisms of axon guidance and selective vulnerability. CFEOM presents with congenital ptosis and restricted eye movements, and can be caused by heterozygous missense mutations in the kinesin motor protein KIF21A or in the β-tubulin isotypes TUBB3 or TUBB2B. CFEOM-causing mutations in these genes alter protein function and result in axon growth and guidance defects. DRS presents with inability to abduct one or both eyes. It can be caused by decreased function of several transcription factors critical for abducens motor neuron identity, including MAFB, or by heterozygous missense mutations in CHN1, which encodes α2-chimaerin, a Rac-GAP GTPase that affects cytoskeletal dynamics. Examination of the orbital innervation in mice lacking Mafb has established that the stereotypical misinnervation of the lateral rectus by fibers of the oculomotor nerve in DRS is secondary to absence of the abducens nerve. Studies of a CHN1 mouse model have begun to elucidate mechanisms of selective vulnerability in the nervous system.

Collaboration


Dive into the Mary C. Whitman's collaboration.

Top Co-Authors

Avatar

David G. Hunter

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max A. Tischfield

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Caroline Andrews

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kannan Natarajan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katelyn MacNeill

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge