Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary E. A. Howell is active.

Publication


Featured researches published by Mary E. A. Howell.


The Journal of Clinical Endocrinology and Metabolism | 2009

Insulin-Stimulated Translocation of Glucose Transporter (GLUT) 12 Parallels That of GLUT4 in Normal Muscle

Charles A. Stuart; Mary E. A. Howell; Yi Zhang; Deling Yin

CONTEXT GLUT4 is the predominant glucose transporter isoform expressed in fat and muscle. In GLUT4 null mice, insulin-stimulated glucose uptake into muscle was diminished but not eliminated, suggesting that another insulin-sensitive system was present. OBJECTIVE This study was intended to determine whether insulin caused GLUT12 translocation in muscle. DESIGN Six normal volunteers had muscle biopsies before and after euglycemic insulin infusions. SETTING Infusions and biopsies were performed in an outpatient clinic. PARTICIPANTS Subjects were nonobese, young adults with no family history of diabetes. MAIN OUTCOME MEASURES GLUT12, GLUT4, and GLUT1 proteins were quantified in muscle biopsy fractions. Cultured myoblasts were used to determine whether GLUT12 translocation was phosphatidyl inositol-3 kinase (PI3-K)-dependent. INTERVENTION Insulin was infused at 40 mU/m(2) x min for 3 h. RESULTS In human muscle, insulin caused a shift of a portion of GLUT12 from intracellular low-density microsomes to the plasma membrane (PM) fraction (17% in PM at baseline, 38% in PM after insulin). Insulin increased GLUT4 in PM from 13 to 42%. GLUT1 was predominantly in the PM fractions at baseline and did not change significantly after insulin. L6 myoblasts in culture also expressed and translocated GLUT12 in response to insulin, but inhibiting PI3-K prevented the translocation of GLUT12 and GLUT4. CONCLUSIONS Insulin causes GLUT12 to translocate from an intracellular location to the plasma membrane in normal human skeletal muscle. Translocation of GLUT12 in cultured myoblasts was dependent on activation of PI3-K. GLUT12 may have evolutionarily preceded GLUT4 and now provides redundancy to the dominant GLUT4 system in muscle.


The Journal of Clinical Endocrinology and Metabolism | 2013

Slow-Twitch Fiber Proportion in Skeletal Muscle Correlates With Insulin Responsiveness

Charles A. Stuart; Melanie P. McCurry; Anna Marino; Mark A. South; Mary E. A. Howell; Andrew S. Layne; Michael W. Ramsey; Michael H. Stone

CONTEXT The metabolic syndrome, characterized by central obesity with dyslipidemia, hypertension, and hyperglycemia, identifies people at high risk for type 2 diabetes. OBJECTIVE Our objective was to determine how the insulin resistance of the metabolic syndrome is related to muscle fiber composition. DESIGN Thirty-nine sedentary men and women (including 22 with the metabolic syndrome) had insulin responsiveness quantified using euglycemic clamps and underwent biopsies of the vastus lateralis muscle. Expression of insulin receptors, insulin receptor substrate-1, glucose transporter 4, and ATP synthase were quantified with immunoblots and immunohistochemistry. PARTICIPANTS AND SETTING Participants were nondiabetic, metabolic syndrome volunteers and sedentary control subjects studied at an outpatient clinic. MAIN OUTCOME MEASURES Insulin responsiveness during an insulin clamp and the fiber composition of a muscle biopsy specimen were evaluated. RESULTS There were fewer type I fibers and more mixed (type IIa) fibers in metabolic syndrome subjects. Insulin responsiveness and maximal oxygen uptake correlated with the proportion of type I fibers. Insulin receptor, insulin receptor substrate-1, and glucose transporter 4 expression were not different in whole muscle but all were significantly less in the type I fibers of metabolic syndrome subjects when adjusted for fiber proportion and fiber size. Fat oxidation and muscle mitochondrial expression were not different in the metabolic syndrome subjects. CONCLUSION Lower proportion of type I fibers in metabolic syndrome muscle correlated with the severity of insulin resistance. Even though whole muscle content was normal, key elements of insulin action were consistently less in type I muscle fibers, suggesting their distribution was important in mediating insulin effects.


The Journal of Clinical Endocrinology and Metabolism | 2011

Impaired Muscle AMPK Activation in the Metabolic Syndrome May Attenuate Improved Insulin Action after Exercise Training

Andrew S. Layne; Sami Nasrallah; Mark A. South; Mary E. A. Howell; Melanie P. McCurry; Michael W. Ramsey; Michael H. Stone; Charles A. Stuart

CONTEXT Strength training induces muscle remodeling and may improve insulin responsiveness. OBJECTIVE This study will quantify the impact of resistance training on insulin sensitivity in subjects with the metabolic syndrome and correlate this with activation of intramuscular pathways mediating mitochondrial biogenesis and muscle fiber hypertrophy. DESIGN Ten subjects with the metabolic syndrome (MS) and nine sedentary controls underwent 8 wk of supervised resistance exercise training with pre- and posttraining anthropometric and muscle biochemical assessments. SETTING Resistance exercise training took place in a sports laboratory on a college campus. MAIN OUTCOME MEASURES Pre- and posttraining insulin responsiveness was quantified using a euglycemic clamp. Changes in expression of muscle 5-AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) pathways were quantified using immunoblots. RESULTS Strength and stamina increased in both groups. Insulin sensitivity increased in controls (steady-state glucose infusion rate = 7.0 ± 2.0 mg/kg · min pretraining training vs. 8.7 ± 3.1 mg/kg · min posttraining; P < 0.01) but did not improve in MS subjects (3.3 ± 1.3 pre vs. 3.1 ± 1.0 post). Muscle glucose transporter 4 increased 67% in controls and 36% in the MS subjects. Control subjects increased muscle phospho-AMPK (43%), peroxisome proliferator-activated receptor γ coactivator 1α (57%), and ATP synthase (60%), more than MS subjects (8, 28, and 21%, respectively). In contrast, muscle phospho-mTOR increased most in the MS group (57 vs. 32%). CONCLUSION Failure of resistance training to improve insulin responsiveness in MS subjects was coincident with diminished phosphorylation of muscle AMPK, but increased phosphorylation of mTOR, suggesting activation of the mTOR pathway could be involved in inhibition of exercise training-related increases in AMPK and its activation and downstream events.


Brain Research | 2011

Brain glucose transporter (Glut3) haploinsufficiency does not impair mouse brain glucose uptake

Charles A. Stuart; Ian R. Ross; Mary E. A. Howell; Melanie P. McCurry; Thomas G. Wood; Jeffrey D. Ceci; Stephen J. Kennel; Jonathan S. Wall

Mouse brain expresses three principal glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3(-/-) genotype is intrauterine lethal by 7days post-coitis, but the heterozygous (Glut3(+/-)) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberrations. At 12weeks of age, brain uptake of tail vein-injected ((3))H-2-deoxy glucose in Glut3(+/-) mice was not different from Glut3(+/+) littermates, despite 50% less Glut3 protein expression in the brain. The brain uptake of injected ((18))F-2-fluoro-2-deoxy glucose was similarly not different from Glut3(+/-) littermates in the total amount, time course, or brain imaging in the Glut3(+/-) mice. Glut1 and Glut6 protein expressions evaluated by immunoblots were not affected by the diminished Glut3 expression in the Glut3(+/-) mice. We conclude that a 50% decrease in Glut3 is not limiting for the uptake of glucose into the mouse brain, since Glut3 haploinsufficiency does not impair brain glucose uptake or utilization.


Medicine and Science in Sports and Exercise | 2013

Insulin responsiveness in metabolic syndrome after eight weeks of cycle training.

Charles A. Stuart; Mark A. South; Michelle L. Lee; Melanie P. McCurry; Mary E. A. Howell; Michael W. Ramsey; Michael H. Stone

INTRODUCTION Insulin resistance in obesity is decreased after successful diet and exercise. Aerobic exercise training alone was evaluated as an intervention in subjects with the metabolic syndrome. METHODS Eighteen nondiabetic, sedentary subjects, 11 with the metabolic syndrome, participated in 8 wk of increasing intensity stationary cycle training. RESULTS Cycle training without weight loss did not change insulin resistance in metabolic syndrome subjects or sedentary control subjects. Maximal oxygen consumption (V·O 2max), activated muscle AMP-dependent kinase, and muscle mitochondrial marker ATP synthase all increased. Strength, lean body mass, and fat mass did not change. The activated mammalian target of rapamycin was not different after training. Training induced a shift in muscle fiber composition in both groups but in opposite directions. The proportion of type 2× fibers decreased with a concomitant increase in type 2a mixed fibers in the control subjects, but in metabolic syndrome, type 2× fiber proportion increased and type 1 fibers decreased. Muscle fiber diameters increased in all three fiber types in metabolic syndrome subjects. Muscle insulin receptor expression increased in both groups, and GLUT4 expression increased in the metabolic syndrome subjects. The excess phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser337 in metabolic syndrome muscle tended to increase further after training in spite of a decrease in total IRS-1. CONCLUSIONS In the absence of weight loss, the cycle training of metabolic syndrome subjects resulted in enhanced mitochondrial biogenesis and increased the expression of insulin receptors and GLUT4 in muscle but did not decrease the insulin resistance. The failure for the insulin signal to proceed past IRS-1 tyrosine phosphorylation may be related to excess serine phosphorylation at IRS-1 Ser337, and this is not ameliorated by 8 wk of endurance exercise training.


American Journal of Physiology-cell Physiology | 2016

Myosin content of individual human muscle fibers isolated by laser capture microdissection.

Charles A. Stuart; William L. Stone; Mary E. A. Howell; Marianne Brannon; H. Kenton Hall; Andrew L. Gibson; Michael H. Stone

Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle.


Physiological Reports | 2014

Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

Charles A. Stuart; Mary E. A. Howell; Brian M. Cartwright; Melanie P. McCurry; Michelle L. Lee; Michael W. Ramsey; Michael H. Stone

Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss.


Journal of Strength and Conditioning Research | 2016

Effects of Short-Term Free-Weight and Semiblock Periodization Resistance Training on Metabolic Syndrome.

Mark A. South; Andrew S. Layne; Charles A. Stuart; N. Travis Triplett; Michael W. Ramsey; Mary E. A. Howell; William A. Sands; Satoshi Mizuguchi; W. Guy Hornsby; Ashley A. Kavanaugh; Michael H. Stone

Abstract South, MA, Layne, AS, Stuart, CA, Triplett, NT, Ramsey, MW, Howell, ME, Sands, WA, Mizuguchi, S, Hornsby, WG, Kavanaugh, AA, and Stone, MH. Effects of short-term free-weight and semiblock periodization resistance training on metabolic syndrome. J Strength Cond Res 30(10): 2682–2696, 2016—The effects of short-term resistance training on performance and health variables associated with prolonged sedentary lifestyle and metabolic syndrome (MS) were investigated. Resistance training may alter a number of health-related, physiological, and performance variables. As a result, resistance training can be used as a valuable tool in ameliorating the effects of a sedentary lifestyle including those associated with MS. Nineteen previously sedentary subjects (10 with MS and 9 with nonmetabolic syndrome [NMS]) underwent 8 weeks of supervised resistance training. Maximum strength was measured using an isometric midthigh pull and resulting force-time curve. Vertical jump height (JH) and power were measured using a force plate. The muscle cross-sectional area (CSA) and type were examined using muscle biopsy and standard analysis techniques. Aerobic power was measured on a cycle ergometer using a ParvoMedics 2400 Metabolic system. Endurance was measured as time to exhaustion on a cycle ergometer. After training, maximum isometric strength, JH, jump power, and V[Combining Dot Above]O2peak increased by approximately 10% (or more) in both the metabolic and NMS groups (both male and female subjects). Over 8 weeks of training, body mass did not change statistically, but percent body fat decreased in subjects with the MS and in women, and lean body mass increased in all groups (p ⩽ 0.05). Few alterations were noted in the fiber type. Men had larger CSAs compared those of with women, and there was a fiber-specific trend toward hypertrophy over time. In summary, 8 weeks of semiblock free-weight resistance training improved several performance variables and some cardiovascular factors associated with MS.


Journal of Applied Physiology | 2017

Muscle hypertrophy in prediabetic men after 16 wk of resistance training

Charles A. Stuart; Michelle L. Lee; Mark A. South; Mary E. A. Howell; Michael H. Stone

Resistance training of healthy young men typically results in muscle hypertrophy and a shift in vastus lateralis composition away from type IIx fibers to an increase in IIa fiber content. Our previous studies of 8 wk of resistance training found that many metabolic syndrome men and women paradoxically increased IIx fibers with a decrease in IIa fibers. To confirm the hypothesis that obese subjects might have muscle remodeling after resistance training very different from healthy lean subjects, we subjected a group of nine obese male volunteers to progressive resistance training for a total of 16 wk. In these studies, weight loss was discouraged so that muscle changes would be attributed to the training alone. Detailed assessments included comparisons of histological examinations of needle biopsies of vastus lateralis muscle pretraining and at 8 and 16 wk. Prolonging the training from 8 to 16 wk resulted in increased strength, improved body composition, and more muscle fiber hypertrophy, but euglycemic clamp-quantified insulin responsiveness did not improve. Similar to prior studies, muscle fiber composition shifted toward more fast-twitch type IIx fibers (23 to 42%). Eight weeks of resistance training increased the muscle expression of phosphorylated Akt2 and mTOR. Muscle GLUT4 expression increased, although insulin receptor and IRS-1 expression did not change. We conclude that resistance training of prediabetic obese subjects is effective at changing muscle, resulting in fiber hypertrophy and increased type IIx fiber content, and these changes continue up to 16 wk of training.NEW & NOTEWORTHY Obese, insulin-resistant men responded to 16 wk of progressive resistance training with muscle hypertrophy and increased strength and a shift in muscle fiber composition toward fast-twitch, type IIx fibers. Activation of muscle mTOR was increased by 8 wk but did not increase further at 16 wk despite continued augmentation of peak power and rate of force generation.


Sports | 2018

Neuromuscular Adaptations Following Training and Protein Supplementation in a Group of Trained Weightlifters

Christopher B. Taber; Kevin M. Carroll; Brad H. DeWeese; Kimitake Sato; Charles A. Stuart; Mary E. A. Howell; Kenton Hall; Caleb D. Bazyler; Michael H. Stone

The purpose of this study was to examine the effects of a recovery supplement compared with a placebo on muscle morphology in trained weightlifters. Vastus lateralis and muscle fiber cross sectional area of type I and type II fibers were compared between groups using a series of 2 × 2 (group × time) repeated measure ANOVAs. Both groups on average improved cross-sectional area of the vastus lateralis, type I and type II muscle fibers from pre-to-post but individual response varied within both groups. Greater magnitude of changes in type I and type II muscle fibers were observed for the placebo group but not for vastus lateralis cross sectional area. Additionally, subjects were divided into large and small fiber groups based on combined fiber size at the start of the investigation. These findings indicate that the recovery supplement utilized provided no greater effect compared with a placebo in a 12-week block periodization protocol in trained weightlifters. The primary determinate of fiber size changes in the study was determined to be the initial fiber size of muscle fibers with larger practical changes observed in the small fiber group compared with the large fiber group in type I, II, and ultrasound cross-sectional area (CSA).

Collaboration


Dive into the Mary E. A. Howell's collaboration.

Top Co-Authors

Avatar

Charles A. Stuart

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Michael H. Stone

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Michael W. Ramsey

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Mark A. South

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Melanie P. McCurry

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Michelle L. Lee

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Layne

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Brian M. Cartwright

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Deling Yin

East Tennessee State University

View shared research outputs
Top Co-Authors

Avatar

Aditi A. Narsale

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge