Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary M. Senior is active.

Publication


Featured researches published by Mary M. Senior.


Journal of Medicinal Chemistry | 2010

Application of Fragment-Based NMR Screening, X-ray Crystallography, Structure-Based Design, and Focused Chemical Library Design to Identify Novel μM Leads for the Development of nM BACE-1 (β-Site APP Cleaving Enzyme 1) Inhibitors

Yu-Sen Wang; Corey Strickland; Johannes H. Voigt; Matthew E. Kennedy; Brian M. Beyer; Mary M. Senior; Elizabeth M. Smith; Terry Nechuta; Vincent S. Madison; Michael Czarniecki; Brian Mckittrick; Andrew Stamford; Eric M. Parker; John C. Hunter; William J. Greenlee; Daniel F. Wyss

Fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design were used to identify novel inhibitors for BACE-1. A rapid optimization of an initial NMR hit was achieved by a combination of NMR and a functional assay, resulting in the identification of an isothiourea hit with a K(d) of 15 microM for BACE-1. NMR data and the crystal structure revealed that this hit makes H-bond interactions with the two catalytic aspartates, occupies the nonprime side region of the active site of BACE-1, and extends toward the S3 subpocket (S3sp). A focused NMR-based search for heterocyclic isothiourea isosteres resulted in several distinct classes of BACE-1 active site directed compounds with improved chemical stability and physicochemical properties. The strategy for optimization of the 2-aminopyridine lead series to potent inhibitors of BACE-1 was demonstrated. The structure-based design of a cyclic acylguanidine lead series and its optimization into nanomolar BACE-1 inhibitors are the subject of the companion paper


Proceedings of the National Academy of Sciences of the United States of America | 2003

Flexible lid to the p53-binding domain of human Mdm2: Implications for p53 regulation

Mark A. McCoy; Jennifer J. Gesell; Mary M. Senior; Daniel F. Wyss

The stabilization of p53 against Mdm2-mediated degradation is an important event in DNA damage response. Initial models of p53 stabilization focused on posttranslational modification of p53 that would disrupt the p53–Mdm2 interaction. The N-terminal regions of both p53 and Mdm2 are modified in vivo in response to cellular stress, suggesting that modifications to Mdm2 also may affect the p53–Mdm2 interaction. Our NMR studies of apo-Mdm2 have found that, in addition to Mdm2 residues 25–109 that form the well ordered p53-binding domain that was observed in the p52–Mdm2 complex, Mdm2 residues 16–24 form a lid that closes over the p53-binding site. The Mdm2 lid, which is strictly conserved in mammals, may help to stabilize apo-Mdm2. It also competes weakly with peptidic and nonpeptidic antagonists. Modifications to the Mdm2 lid may disrupt p53–Mdm2 binding leading to p53 stabilization. Mdm2 and Mdm4 possess nearly identical p53-binding domains but different lids suggesting that lid modifications may select for p53 binding.


ACS Medicinal Chemistry Letters | 2012

Discovery of SCH 900271, a Potent Nicotinic Acid Receptor Agonist for the Treatment of Dyslipidemia.

Anandan Palani; Ashwin U. Rao; Xiao Chen; Xianhai Huang; Jing Su; Haiqun Tang; Ying Huang; Jun Qin; Dong Xiao; Sylvia Degrado; Michael Sofolarides; Xiaohong Zhu; Zhidan Liu; Brian Mckittrick; Wei Zhou; Robert G. Aslanian; William J. Greenlee; Mary M. Senior; Boonlert Cheewatrakoolpong; Hongtao Zhang; Constance Farley; John A. Cook; Stan Kurowski; Qiu Li; Margaret van Heek; Gangfeng Wang; Yunsheng Hsieh; Fangbiao Li; Scott Greenfeder; Madhu Chintala

Structure-guided optimization of a series of C-5 alkyl substituents led to the discovery of a potent nicotinic acid receptor agonist SCH 900271 (33) with an EC50 of 2 nM in the hu-GPR109a assay. Compound 33 demonstrated good oral bioavailability in all species. Compound 33 exhibited dose-dependent inhibition of plasma free fatty acid (FFA) with 50% FFA reduction at 1.0 mg/kg in fasted male beagle dogs. Compound 33 had no overt signs of flushing at doses up to 10 mg/kg with an improved therapeutic window to flushing as compared to nicotinic acid. Compound 33 was evaluated in human clinical trials.


Journal of Biomolecular NMR | 1996

Chemical shift assignments and secondary structure of the Grb2 SH2 domain by heteronuclear NMR spectroscopy

Yu-Sen Wang; Anne F. Frederick; Mary M. Senior; Barbara A. Lyons; Stuart Black; Paul Kirschmeier; Louise M. Perkins; Oswald Wilson

SummaryThe growth factor receptor-bound protein-2 (Grb2) is an adaptor protein that mediates signal transduction pathways. Chemical shift assignments were obtained for the SH2 domain of Grb2 by heteronuclear NMR spectroscopy, employing the uniformly 13C-/15N-enriched protein as well as the protein containing selectively 15N-enriched amino acids. Using the Chemical Shift Index (CSI) method, the chemical shift indices of four nuclei, 1Hα, 13Cα, 13Cβ and 13CO, were used to derive the secondary structure of the protein. Nuclear Overhauser enhancements (NOEs) were then employed to confirm the secondary structure. The CSI results were compared to the secondary structural elements predicted for the Grb2 SH2 domain from a sequence alignment [Lee et al. (1994) Structure, 2, 423–438]. The core structure of the SH2 domain contains an antiparallel β-sheet and two α-helices. In general, the secondary structural elements determined from the CSI method agree well with those predicted from the sequence alignment.


Journal of Biomolecular NMR | 1998

The Three-Dimensional Solution Structure of the Src Homology Domain-2 of the Growth Factor Receptor-Bound Protein-2

Mary M. Senior; Anne F. Frederick; Stuart Black; Nicholas J. Murgolo; Louise M. Perkins; Oswald Wilson; Mark E. Snow; Yu-Sen Wang

A set of high-resolution three-dimensional solution structures of the Src homology region-2 (SH2) domain of the growth factor receptor-bound protein-2 was determined using heteronuclear NMR spectroscopy. The NMR data used in this study were collected on a stable monomeric protein solution that was free of protein aggregates and proteolysis. The solution structure was determined based upon a total of 1439 constraints, which included 1326 nuclear Overhauser effect distance constraints, 70 hydrogen bond constraints, and 43 dihedral angle constraints. Distance geometry-simulated annealing calculations followed by energy minimization yielded a family of 18 structures that converged to a root-mean-square deviation of 1.09 Å for all backbone atoms and 0.40 Å for the backbone atoms of the central β-sheet. The core structure of the SH2 domain contains an antiparallel β-sheet flanked by two parallel α-helices displaying an overall architecture that is similar to other known SH2 domain structures. This family of NMR structures is compared to the X-ray structure and to another family of NMR solution structures determined under different solution conditions.


Archive | 2008

NMR-Based Screening Applied to Drug Discovery Targets

Jennifer J. Gesell; Mark A. McCoy; Mary M. Senior; Yu-Sen Wang; Daniel F. Wyss

While conventional bioassay-based high-throughput screening (HTS) remains a mainstream approach for lead discovery, its limitations have driven the development of alternative and complementary tools. In this regard, novel NMR-based approaches that have emerged over the last few years show great promise. We have used NMR-based screening approaches for a variety of drug targets to identify low molecular weight (MW) small molecule hits from customized libraries, which subsequently could be optimized into leads through focused, structure-guided chemistry. Focus was placed on targets for which HTS failed to identify suitable leads. This report discusses different NMR-based screening techniques and follow-up strategies for lead discovery and illustrates their application to the NS3 protease and NS3 helicase domains of the hepatitis C virus (HCV).


Journal of Synchrotron Radiation | 2008

Key steps in the structure-based optimization of the hepatitis C virus NS3/4A protease inhibitor SCH503034

Vincent Madison; Andrew Prongay; Zhuyan Guo; Nanhua Yao; John Pichardo; Thierry O. Fischmann; Corey Strickland; Joseph E. Myers; Patricia C. Weber; Brian M. Beyer; Richard N. Ingram; Zhi Hong; Winifred W. Prosise; Lata Ramanathan; S. Shane Taremi; Taisa Yarosh-Tomaine; Rumin Zhang; Mary M. Senior; Rong-Sheng Yang; Bruce A. Malcolm; Ashok Arasappan; Frank Bennett; Stephane L. Bogen; Kevin X. Chen; Edwin Jao; Yi-Tsung Liu; Raymond G. Lovey; Anil K. Saksena; Srikanth Venkatraman; Viyyoor M. Girijavallabhan

Crystal structures of protease/inhibitor complexes guided optimization of the buried nonpolar surface area thereby maximizing hydrophobic binding. The resulting potent tripeptide inhibitor is in clinical trials.


Journal of Medicinal Chemistry | 2007

Discovery of the HCV NS3/4A protease inhibitor (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3- [2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]- 6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (Sch 503034) II. Key steps in structure-based optimization.

Andrew Prongay; Zhuyan Guo; Nanhua Yao; John Pichardo; Thierry O. Fischmann; Corey Strickland; Joseph E. Myers; Patricia C. Weber; Brian M. Beyer; Richard N. Ingram; Zhi Hong; Winifred W. Prosise; Lata Ramanathan; S. Shane Taremi; Taisa Yarosh-Tomaine; Rumin Zhang; Mary M. Senior; Rong-Sheng Yang; Bruce A. Malcolm; Ashok Arasappan; Frank Bennett; Stephane L. Bogen; Kevin Chen; Edwin Jao; Yi-Tsung Liu; Raymond G. Lovey; Anil K. Saksena; Srikanth Venkatraman; Viyyoor M. Girijavallabhan; F. George Njoroge


Journal of Molecular Biology | 2001

Solution structure and dynamics of the single-chain hepatitis C virus NS3 protease NS4A cofactor complex.

Mark A. McCoy; Mary M. Senior; Jennifer J. Gesell; Lata Ramanathan; Daniel F. Wyss


Journal of Medicinal Chemistry | 2004

Non-peptidic small-molecule inhibitors of the single-chain hepatitis C virus NS3 protease/NS4A cofactor complex discovered by structure-based NMR screening.

Daniel F. Wyss; Ashok Arasappan; Mary M. Senior; Yu-Sen Wang; Brian M. Beyer; F. George Njoroge; Mark A. McCoy

Collaboration


Dive into the Mary M. Senior's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge