Yu-Sen Wang
Schering-Plough
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Sen Wang.
Journal of Medicinal Chemistry | 2010
Zhaoning Zhu; Zhong-Yue Sun; Yuanzan Ye; Johannes H. Voigt; Corey Strickland; Elizabeth M. Smith; Jared N. Cumming; Lingyan Wang; Jesse Wong; Yu-Sen Wang; Daniel F. Wyss; Xia Chen; Reshma Kuvelkar; Matthew E. Kennedy; Leonard Favreau; Eric M. Parker; Brian Mckittrick; Andrew Stamford; Michael Czarniecki; William J. Greenlee; John C. Hunter
A number of novel amidine containing heterocycles were designed to reproduce the unique interaction pattern, revealed by X-ray crystallography, between the BACE-1 catalytic diad and a weak NMR screening hit (3), with special attention paid to maintaining the appropriate basicity and limiting the number of H-bonding donors of these scaffolds. The iminohydantoin cores (10 and 23) were examined first and found to interact with the catalytic diad in one of two binding modes (A and B), each with the iminohydantoin core flipped 180 degrees in relation to the other. The amidine structural motif within each core forms a bidentate interaction with a different aspartic acid of the catalytic diad. Both modes reproduced a highly conserved interaction pattern between the inhibitors and the catalytic aspartates, as revealed by 3. Potent iminohydantoin BACE-1 inhibitors have been obtained, validating the molecular design as aspartyl protease catalytic site inhibitors. Brain penetrant small molecule BACE inhibitors with high ligand efficiencies have been discovered, enabling multiple strategies for further development of these inhibitors into highly potent, selective and in vivo efficacious BACE inhibitors.
Journal of Medicinal Chemistry | 2010
Yu-Sen Wang; Corey Strickland; Johannes H. Voigt; Matthew E. Kennedy; Brian M. Beyer; Mary M. Senior; Elizabeth M. Smith; Terry Nechuta; Vincent S. Madison; Michael Czarniecki; Brian Mckittrick; Andrew Stamford; Eric M. Parker; John C. Hunter; William J. Greenlee; Daniel F. Wyss
Fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design were used to identify novel inhibitors for BACE-1. A rapid optimization of an initial NMR hit was achieved by a combination of NMR and a functional assay, resulting in the identification of an isothiourea hit with a K(d) of 15 microM for BACE-1. NMR data and the crystal structure revealed that this hit makes H-bond interactions with the two catalytic aspartates, occupies the nonprime side region of the active site of BACE-1, and extends toward the S3 subpocket (S3sp). A focused NMR-based search for heterocyclic isothiourea isosteres resulted in several distinct classes of BACE-1 active site directed compounds with improved chemical stability and physicochemical properties. The strategy for optimization of the 2-aminopyridine lead series to potent inhibitors of BACE-1 was demonstrated. The structure-based design of a cyclic acylguanidine lead series and its optimization into nanomolar BACE-1 inhibitors are the subject of the companion paper
Current Pharmaceutical Design | 2002
Stephen Kenneth Youngster; Yu-Sen Wang; Michael J. Grace; James Bausch; Ronald Bordens; Daniel F. Wyss
Derivatization of protein-based therapeutics with polyethylene glycol (pegylation) can often improve pharmacokinetic and pharmacodynamic properties of the proteins and thereby, improve efficacy and minimize dosing frequency. This review will provide an overview of pegylation technology and pegylated protein-based drugs being used or investigated clinically. The novel therapeutic, PEG Intron(R), formed by attaching a 12-kDa mono-methoxy polyethylene glycol (PEG) to the interferon alpha-2b protein, will be discussed in detail in terms of its structure, biological activities, pharmacokinetic properties, and clinical efficacy for the treatment of chronic hepatitis C. Detailed physicochemical and biological characterization studies of PEG Intron revealed its composition of pegylated positional isomers and the specific anti-viral activity associated with each of them. Pegylation of Intron A at pH 6.5 results in a mixture of > or = 95% mono-pegylated isoforms with the predominant species (approximately 50%) derivatized to the His(34) residue with the remaining positional isomers pegylated at various lysines, the N-terminal cysteine, as well as serine, tyrosine, and another histidine residue. The anti-viral activity for each pegylated isomer showed that the highest specific activity (37%) was associated with the His(34)-pegylated isomer. Though pegylation decreases the specific activity of the interferon alpha-2b protein in vitro, the potency of PEG Intron was comparable to the Intron A standard at both the molecular and cellular level. The substituted IFN had an enhanced pharmacokinetic profile in both animal and human studies, and, when combined with ribavirin, was very effective in reducing hepatitis C viral load and maintaining sustained viral suppression in patients.
Bioorganic & Medicinal Chemistry | 1997
Arthur G. Taveras; Stacy W. Remiszewski; Ronald J. Doll; David Cesarz; Eric Huang; Paul Kirschmeier; Birendra N. Pramanik; M.E. Snow; Yu-Sen Wang; J.D. del Rosario; Bancha Vibulbhan; B.B. Bauer; Joan E. Brown; Donna Carr; Joseph J. Catino; C.A. Evans; Viyyoor M. Girijavallabhan; Larry Heimark; Linda James; Stephen D. Liberles; C. Nash; L. Perkins; M.M. Senior; Anthony Tsarbopoulos; Ashit K. Ganguly; Robert M. Aust; Edward L. Brown; Dorothy M. DeLisle; Shella A. Fuhrman; Thomas F. Hendrickson
The nucleotide exchange process is one of the key activation steps regulating the ras protein. This report describes the development of potent, non-nucleotide, small organic inhibitors of the ras nucleotide exchange process. These inhibitors bind to the ras protein in a previously unidentified binding pocket, without displacing bound nucleotide. This report also describes the development and use of mass spectrometry, NMR spectroscopy and molecular modeling techniques to elucidate the structure of a drug-protein complex, and aid in designing new ras inhibitor targets.
Bioorganic & Medicinal Chemistry | 1997
Ashit K. Ganguly; Birendra N. Pramanik; Eric Huang; Stephen D. Liberles; Larry Heimark; Yi-Tsung Liu; A. Tsarbopoulos; Ronald J. Doll; Arthur G. Taveras; Stacy W. Remiszewski; M.E. Snow; Yu-Sen Wang; Bancha Vibulbhan; David Cesarz; Joan E. Brown; J.D. del Rosario; Linda James; Paul Kirschmeier; Viyyoor M. Girijavallabhan
MS based methodology employing electrospray ionization (ESI) is described for the detection of ternary complexes in which SCH 54292 or SCH 54341 and GDP are noncovalently bound to oncogenic ras protein. The observed molecular weights of 19,816 and 19,570 Da confirmed the presence of noncovalent complexes of ras-GDP-SCH 54292 and ras-GDP-SCH 54341, respectively. We have also performed selective chemical modification of lysine residues of the ras protein complex followed by enzymatic digestion and on-line LC-ESI MS peptide mapping to determine protein-drug binding topography. There was a good correlation between nucleotide exchange inhibition as determined by the enzyme assay and evidence of complex formation as determined by MS.
ACS Medicinal Chemistry Letters | 2010
Cliff C. Cheng; Xiaohua Huang; Gerald W. Shipps; Yu-Sen Wang; Daniel F. Wyss; Kyle A. Soucy; Chuan-kui Jiang; Sony Agrawal; Eric Ferrari; Zhiqing He; Hsueh-Cheng Huang
Pyridine carboxamide-based inhibitors of the hepatitis C virus (HCV) NS5B polymerase were diversified and optimized to a variety of topologically related scaffolds. In particular, the 2-methyl nicotinic acid scaffold was developed into inhibitors with improved biochemical (IC50-GT1b = 0.014 μM) and cell-based HCV replicon potency (EC50-GT1b = 0.7 μM). Biophysical and biochemical characterization identified this novel series of compounds as palm site binders to HCV polymerase.
Journal of Biomolecular NMR | 1996
Yu-Sen Wang; Anne F. Frederick; Mary M. Senior; Barbara A. Lyons; Stuart Black; Paul Kirschmeier; Louise M. Perkins; Oswald Wilson
SummaryThe growth factor receptor-bound protein-2 (Grb2) is an adaptor protein that mediates signal transduction pathways. Chemical shift assignments were obtained for the SH2 domain of Grb2 by heteronuclear NMR spectroscopy, employing the uniformly 13C-/15N-enriched protein as well as the protein containing selectively 15N-enriched amino acids. Using the Chemical Shift Index (CSI) method, the chemical shift indices of four nuclei, 1Hα, 13Cα, 13Cβ and 13CO, were used to derive the secondary structure of the protein. Nuclear Overhauser enhancements (NOEs) were then employed to confirm the secondary structure. The CSI results were compared to the secondary structural elements predicted for the Grb2 SH2 domain from a sequence alignment [Lee et al. (1994) Structure, 2, 423–438]. The core structure of the SH2 domain contains an antiparallel β-sheet and two α-helices. In general, the secondary structural elements determined from the CSI method agree well with those predicted from the sequence alignment.
Journal of Biomolecular NMR | 1998
Mary M. Senior; Anne F. Frederick; Stuart Black; Nicholas J. Murgolo; Louise M. Perkins; Oswald Wilson; Mark E. Snow; Yu-Sen Wang
A set of high-resolution three-dimensional solution structures of the Src homology region-2 (SH2) domain of the growth factor receptor-bound protein-2 was determined using heteronuclear NMR spectroscopy. The NMR data used in this study were collected on a stable monomeric protein solution that was free of protein aggregates and proteolysis. The solution structure was determined based upon a total of 1439 constraints, which included 1326 nuclear Overhauser effect distance constraints, 70 hydrogen bond constraints, and 43 dihedral angle constraints. Distance geometry-simulated annealing calculations followed by energy minimization yielded a family of 18 structures that converged to a root-mean-square deviation of 1.09 Å for all backbone atoms and 0.40 Å for the backbone atoms of the central β-sheet. The core structure of the SH2 domain contains an antiparallel β-sheet flanked by two parallel α-helices displaying an overall architecture that is similar to other known SH2 domain structures. This family of NMR structures is compared to the X-ray structure and to another family of NMR solution structures determined under different solution conditions.
Archive | 2008
Jennifer J. Gesell; Mark A. McCoy; Mary M. Senior; Yu-Sen Wang; Daniel F. Wyss
While conventional bioassay-based high-throughput screening (HTS) remains a mainstream approach for lead discovery, its limitations have driven the development of alternative and complementary tools. In this regard, novel NMR-based approaches that have emerged over the last few years show great promise. We have used NMR-based screening approaches for a variety of drug targets to identify low molecular weight (MW) small molecule hits from customized libraries, which subsequently could be optimized into leads through focused, structure-guided chemistry. Focus was placed on targets for which HTS failed to identify suitable leads. This report discusses different NMR-based screening techniques and follow-up strategies for lead discovery and illustrates their application to the NS3 protease and NS3 helicase domains of the hepatitis C virus (HCV).
Biochemistry | 2000
Yu-Sen Wang; Stephen Kenneth Youngster; James Bausch; Rumin Zhang; Charles McNemar; Daniel F. Wyss