Mary M. Yoklavich
National Oceanic and Atmospheric Administration
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mary M. Yoklavich.
Estuaries | 1996
James P. Barry; Mary M. Yoklavich; Gregor M. Cailliet; David A. Ambrose; Brooke S. Antrim
Food habits of the dominant fishes collected from 1974 to 1980 at eight locations in Elkhorn Slough, California, and the adjacent ocean were investigated. Epifaunal crustacea was the major prey group identified from stomach contents of more than 2,000 fishes, followed by epifaunal and infaunal worms, and molluscs. Overall, 18 fish species consumed 263 different prey taxa, ranging from 10 taxa to 125 taxa per fish species and including 99 crustacean, 56 polychaete, and 39 molluscan taxa. Mean prey richness was greatest at stations near the ocean and lowest at inshore stations. Detailed dietary data for all prey taxa were summarized as trophic spectra for each fish species. Trophic spectra represented functional groups of prey and were used for comparisons of dietary similarity. Cluster analyses, based on trophic spectra, resulted in four feeding guilds of fishes. Of 18 fish species, seven (Amphistichus argenteus, Leptocottus armatus, Embiotoca jacksoni, Clevelandia ios, Gillichthys mirabilis, Cymatogaster aggregata, andCitharichthys stimaeus) fed principally on epifaunal crustacea. Four species (Pleuronectes vetulus, Platichthys stellatus, Phanerodon furcatus, andMyliobatus californica) consumed mostly molluscs and infaunal worms. Two species (Psettichthys melanostictus andTriakis semifasciata) fed on mobile crustacea, and five species (Hyperprosopon anale, Engraulis mordax, Clupea pallasi, Atherinopsis californiensis, andAtherinops affinis) fed largely on zooplankton and plant material. Our results suggest that high food availability enhances the nursery function of imshore habitats, and emphasize the importance of invertebrate prey populations and the indirect linkage of plant production to the ichthyofaunal assemblarly marine immigrant species that are likely ‘estuarine dependent’.
Estuaries | 1991
Mary M. Yoklavich; Gregor M. Cailliet; James P. Barry; David A. Ambrose; Brooke S. Antrim
Assemblages of ichthyofauna of shallow inshore habitats along Californía’s central coast are described in terms of species composition, abundance, and life-style categories. A total of 22,334 fishes from 65 species and 27 families was collected with otter trawls at six sites in the main channel and tidal creeks of Elkhorn Slough, a tidal embayment and seasonal estuary, and two nearshore ocean stations in Monterey Bay during 44 months between August 1974 and June 1980. Greater than 90% of the catch comprised 10 species. The four dominant species,Cymatogaster aggregata, Leptocottus armatus, Phanerodon furcatus, andEmbiotoca jacksoni, occurred during most or all seasons and were classified as residents or partial residents. Several abundant species were marine immigrants that seasonally use the slough as spawning and nursery grounds; this resulted in higher abundance and species richness during summer. Species collected during winter largely were slough residents. Species compsosition and richness varied with distance from the slough entrance. The ocean assemblage was most different, and its similarity to other stations decreased progressively with distance inland and into the tidal creeks. During our study, 5,074 fishes were collected by beach seine in Bennett Slough, a remote shallow marsh basin adjacent to the entrance of Elkhorn Slough. Species richness was relatively low and three euryhaline species accounted for >80% of the total catch. The species assemblage was most similar to those at the tidal creek and most shallow stations of Elkhorn Slough. Resident species numerically dominated assemblages in Bennett Slough and the most inland areas of Elkhorn Slough. The high relative abundance of marine-related fishes (classified as marine, marine immigrant, and partial resident), entering Elkhorn Slough early in life or as spawning adults indicates the importance of this habitat to nearshore fish assemblages.
Environmental Biology of Fishes | 1991
Mary M. Yoklavich; George W. Boehlert
The ability of embryos of the viviparous scorpaenid Sebastes melanops to take up nutrients from an exogenous substrate was demonstrated by incubating embryos at various stages of development (18–30 days after fertilization) in 14C-labeled glycine for 24h. Uptake was highest for embryos at the latest stages (28–30 days) and increased at a linear rate during the incubation period. Nutrient uptake was not time dependent in embryos at the early stages (18–22 days). Nutrient utilization by S. melanops embryos was measured by the oxidation of 14C-labeled glycine to 14CO2. The amount of respired 14CO2 by the oldest embryos increased significantly at a linear rate over the 24 h incubation period. There was no evidence of nutrient utilization by the youngest embryos. The developmental changes we observed in the uptake and utilization of exogenous glycine are supported by our previous findings that the oldest embryos have fully developed mouths and guts, and require additional nutrition from intraovarian sources at this stage of development.
Pacific Science | 2017
Emily Donham; Michael S. Foster; Marc R. Rice; Gregor M. Cailliet; Mary M. Yoklavich; Scott L. Hamilton
Abstract: n Garden eels occur worldwide in the tropics, but little is known about their biology and ecology. We studied Hawaiian garden eel (Gorgasia hawaiiensis) colonies near Kawaihae, Hawai‘i, to investigate multiple aspects of basic biology of this species. Colonies of G. hawaiiensis occurred at depths from 16 to 36 m in soft-bottom habitat adjacent to rocky reefs. Highest burrow densities (up to 40 eels m-2) were in shallower water, and large (~10 mm diameter) burrows were more abundant, less dense, and commonly found in pairs in deeper water. Eels emerged around sunrise and withdrew and covered burrow entrances around sunset. Age was estimated from annual rings in sectioned otoliths (n = 17) and modeled to suggest fast growth to a maximum size of ~600 mm total length and a maximum age of 6 yr. Prey size and eel anatomy suggest that these fish feed by ingesting planktonic prey and processing them in the esophagus. The most common food items were small (<0.5 mm) demersal harpacticoid, cyclopoid, and calanoid copepods and unidentified fish eggs. These and other observations indicate that G. hawaiiensis is abundant, has a high population turnover rate, and may enrich sandy-bottom habitat within their beds by facilitating energy flow from the water column to the benthos.
Fisheries Oceanography | 1996
Kevin M. Bailey; Annette L. Brown; Mary M. Yoklavich; Kathryn L. Mier
Archive | 2002
Mary M. Yoklavich; Santa Cruz; Gregor M. Cailliet; Robert N. Lea; H. Gary Greene; Richard M. Starr; Jean De Marignac
Archive | 2006
Larry G. Allen; Mary M. Yoklavich; Gregor M. Cailliet; Michael H. Horn
Estuarine Coastal and Shelf Science | 1992
Mary M. Yoklavich; Marty Stevenson; Gregor M. Cailliet
Archive | 1993
Mary M. Yoklavich; Gregor M. Cailliet; Guillermo Moreno
Archive | 2000
Mary M. Yoklavich; H. Gary Greene; Gregor M. Cailliet; Deidre Sullivan; Robert N. Lea