Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Motyl is active.

Publication


Featured researches published by Mary Motyl.


Nature | 2006

Platensimycin is a selective FabF inhibitor with potent antibiotic properties

Jun Wang; Stephen M. Soisson; Katherine Young; Wesley L. Shoop; Srinivas Kodali; Andrew Galgoci; Ronald E. Painter; Gopalakrishnan Parthasarathy; Yui S. Tang; Richard D. Cummings; Sookhee Ha; Karen Dorso; Mary Motyl; Hiranthi Jayasuriya; John G. Ondeyka; Kithsiri Herath; Chaowei Zhang; Lorraine D. Hernandez; John J. Allocco; Angela Basilio; José R. Tormo; Olga Genilloud; Francisca Vicente; Fernando Pelaez; Lawrence F. Colwell; Sang Ho Lee; Bruce Michael; Thomas J. Felcetto; Charles Gill; Lynn L. Silver

Bacterial infection remains a serious threat to human lives because of emerging resistance to existing antibiotics. Although the scientific community has avidly pursued the discovery of new antibiotics that interact with new targets, these efforts have met with limited success since the early 1960s. Here we report the discovery of platensimycin, a previously unknown class of antibiotics produced by Streptomyces platensis. Platensimycin demonstrates strong, broad-spectrum Gram-positive antibacterial activity by selectively inhibiting cellular lipid biosynthesis. We show that this anti-bacterial effect is exerted through the selective targeting of β-ketoacyl-(acyl-carrier-protein (ACP)) synthase I/II (FabF/B) in the synthetic pathway of fatty acids. Direct binding assays show that platensimycin interacts specifically with the acyl-enzyme intermediate of the target protein, and X-ray crystallographic studies reveal that a specific conformational change that occurs on acylation must take place before the inhibitor can bind. Treatment with platensimycin eradicates Staphylococcus aureus infection in mice. Because of its unique mode of action, platensimycin shows no cross-resistance to other key antibiotic-resistant strains tested, including methicillin-resistant S. aureus, vancomycin-intermediate S. aureus and vancomycin-resistant enterococci. Platensimycin is the most potent inhibitor reported for the FabF/B condensing enzymes, and is the only inhibitor of these targets that shows broad-spectrum activity, in vivo efficacy and no observed toxicity.


Drug Resistance Updates | 2011

Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria.

M. A. Pfaller; Daniel J. Diekema; David R. Andes; Maiken Cavling Arendrup; Steven D. Brown; Shawn R. Lockhart; Mary Motyl; David S. Perlin

The CLSI established clinical breakpoints (CBPs) for caspofungin (CSF), micafungin (MCF) and anidulafungin (ANF) versus Candida. The same CBP (susceptible (S): MIC ≤ 2 mcg/ml; non-S: MIC > 2 mcg/ml) was applied to all echinocandins and species. More data now allow reassessment of these CBPs. We examined cases of echinocandin failure where both MICs and fks mutations were assessed; wild type (WT) MICs and epidemiological cutoff values (ECVs) for a large Candida collection; molecular analysis of fks hotspots for Candida with known MICs; and pharmacokinetic and pharmacodynamic (PK/PD) data. We applied these findings to propose new species-specific CBPs for echinocandins and Candida. Of 18 candidiasis cases refractory to echinocandins and with fks mutations, 28% (CSF), 58% (ANF) and 66% (MCF) had MICs in the S category using CBP of ≤ 2 mcg/ml, while 0-8% would be S using CBP of ≤ 0.25 mcg/ml. WT MIC distributions revealed ECV ranges of 0.03-0.25 mcg/ml for all major species except C. parapsilosis (1-4 mcg/ml) and C. guilliermondii (4-16 mcg/ml). Among Candida tested for fks mutations, only 15.7-45.1% of 51 mutants were detected using the CBP for NS of >2 mcg/ml. In contrast, a cutoff of >0.25 mcg/ml for C. albicans, C. tropicalis, C. krusei, and C. dubliniensis detected 85.6% (MCF) to 95.2% (CSF) of 21 mutant strains. Likewise, a cutoff of >0.12 mcg/ml for ANF and CSF and of >0.06 mcg/ml for MCF detected 93% (ANF) to 97% (CSF, MCF) of 30 mutant strains of C. glabrata. These data, combined with PK/PD considerations, support CBPs of ≤ 0.25 mcg/ml (S), 0.5 mcg/ml (I), ≥ 1 (R) for CSF/MCF/ANF and C. albicans, C. tropicalis and C. krusei and ≤ 2 mcg/ml (S), 4 mcg/ml (I), and ≥ 8 mcg/ml (R) for these agents and C. parapsilosis. The CBPs for ANF and CSF and C. glabrata are ≤ 0.12 mcg/ml (S), 0.25 mcg/ml (I), and ≥ 0.5 mcg/ml (R), whereas those for MCF are ≤ 0.06 mcg/ml (S), 0.12 mcg/ml (I), and ≥ 0.25 mcg/ml (R). New, species-specific CBPs for Candida and the echinocandins are more sensitive to detect emerging resistance associated with fks mutations, and better able to predict risk for clinical failure.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties.

Jun Wang; Srinivas Kodali; Sang Ho Lee; Andrew Galgoci; Ronald E. Painter; Karen Dorso; Fred Racine; Mary Motyl; Lorraine D. Hernandez; Elizabeth Tinney; Steven L. Colletti; Kithsiri Herath; Richard D. Cummings; Oscar Salazar; Ignacio González; Angela Basilio; Francisca Vicente; Olga Genilloud; Fernando Pelaez; Hiranthi Jayasuriya; Katherine Young; Doris F. Cully; Sheo B. Singh

Emergence of bacterial resistance is a major issue for all classes of antibiotics; therefore, the identification of new classes is critically needed. Recently we reported the discovery of platensimycin by screening natural product extracts using a target-based whole-cell strategy with antisense silencing technology in concert with cell free biochemical validations. Continued screening efforts led to the discovery of platencin, a novel natural product that is chemically and biologically related but different from platensimycin. Platencin exhibits a broad-spectrum Gram-positive antibacterial activity through inhibition of fatty acid biosynthesis. It does not exhibit cross-resistance to key antibiotic resistant strains tested, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant Enterococci. Platencin shows potent in vivo efficacy without any observed toxicity. It targets two essential proteins, β-ketoacyl-[acyl carrier protein (ACP)] synthase II (FabF) and III (FabH) with IC50 values of 1.95 and 3.91 μg/ml, respectively, whereas platensimycin targets only FabF (IC50 = 0.13 μg/ml) in S. aureus, emphasizing the fact that more antibiotics with novel structures and new modes of action can be discovered by using this antisense differential sensitivity whole-cell screening paradigm.


Journal of Clinical Microbiology | 2004

Interlaboratory Comparison of Results of Susceptibility Testing with Caspofungin against Candida and Aspergillus Species

Frank C. Odds; Mary Motyl; Roberto Andrade; Jacques Bille; Emilia Cantón; Manuel Cuenca-Estrella; Amanda D. Davidson; Christian Durussel; David Ellis; Elyse Foraker; Annette W. Fothergill; Mahmoud A. Ghannoum; Robert A. Giacobbe; Miguel Gobernado; Rosemary Handke; Michél Laverdière; Wendy Lee-Yang; William G. Merz; Luis Ostrosky-Zeichner; Javier Pemán; Sophia Perea; John R. Perfect; Michael A. Pfaller; Laurie A. Proia; John H. Rex; Michael G. Rinaldi; Juan L. Rodriguez-Tudela; Wiley A. Schell; Christine E. Shields; Deanna A. Sutton

ABSTRACT Seventeen laboratories participated in a study of interlaboratory reproducibility with caspofungin microdilution susceptibility testing against panels comprising 30 isolates of Candida spp. and 20 isolates of Aspergillus spp. The laboratories used materials supplied from a single source to determine the influence of growth medium (RPMI 1640 with or without glucose additions and antibiotic medium 3 [AM3]), the same incubation times (24 h and 48 h), and the same end point definition (partial or complete inhibition of growth) for the MIC of caspofungin. All tests were run in duplicate, and end points were determined both spectrophotometrically and visually. The results from almost all of the laboratories for quality control and reference Candida and Aspergillus isolates tested with fluconazole and itraconazole matched the NCCLS published values. However, considerable interlaboratory variability was seen in the results of the caspofungin tests. For Candida spp. the most consistent MIC data were generated with visual “prominent growth reduction” (MIC2) end points measured at 24 h in RPMI 1640, where 73.3% of results for the 30 isolates tested fell within a mode ± one dilution range across all 17 laboratories. MIC2 at 24 h in RPMI 1640 or AM3 also gave the best interlaboratory separation of Candida isolates of known high and low susceptibility to caspofungin. Reproducibility of MIC data was problematic for caspofungin tests with Aspergillus spp. under all conditions, but the minimal effective concentration end point, defined as the lowest caspofungin concentration yielding conspicuously aberrant hyphal growth, gave excellent reproducibility for data from 14 of the 17 participating laboratories.


Antimicrobial Agents and Chemotherapy | 2005

Caspofungin Susceptibility Testing of Isolates from Patients with Esophageal Candidiasis or Invasive Candidiasis: Relationship of MIC to Treatment Outcome

Nicholas A. Kartsonis; John A. Killar; Lori Mixson; Chao-Min Hoe; Carole A. Sable; Kenneth Bartizal; Mary Motyl

ABSTRACT The caspofungin clinical trial database offers an opportunity to assess susceptibility results for Candida pathogens obtained from patients with candidiasis and allows for correlations between efficacy outcomes and MICs. Candida isolates have been identified from patients enrolled in four studies of esophageal candidiasis and two studies of invasive candidiasis. The MICs of caspofungin for all baseline isolates were measured at a central laboratory using NCCLS criteria (document M-27A); MICs for caspofungin were defined as the lowest concentration inhibiting prominent growth at 24 h. MICs were then compared to clinical and microbiological outcomes across the two diseases. Susceptibility testing for caspofungin was performed on 515 unique baseline isolates of Candida spp. obtained from patients with esophageal candidiasis. MICs for caspofungin ranged from 0.008 to 4 μg/ml; the MIC50 and MIC90 were 0.5 and 1.0 μg/ml, respectively. Susceptibility testing was also performed on 231 unique baseline isolates of Candida spp. from patients with invasive candidiasis. The majority (∼96%) of MICs were between 0.125 and 2 μg/ml, with MIC50 and MIC90 for caspofungin being 0.5 and 2.0 μg/ml, respectively. Overall, caspofungin demonstrated potent in vitro activity against clinical isolates of Candida species. A relationship between MIC for caspofungin and treatment outcome was not seen for patients with either esophageal candidiasis or invasive candidiasis. Patients with isolates for which the MICs were highest (>2 μg/ml) had better outcomes than patients with isolates for which the MICs were lower (<1 μg/ml). Additionally, no correlation between MIC and outcome was identified for specific Candida species.


European Journal of Clinical Microbiology & Infectious Diseases | 2003

Global Distribution and Outcomes for Candida Species Causing Invasive Candidiasis: Results from an International Randomized Double-Blind Study of Caspofungin Versus Amphotericin B for the Treatment of Invasive Candidiasis

Arnaldo Lopes Colombo; John R. Perfect; Mark J. DiNubile; K. Bartizal; Mary Motyl; P.S. Hicks; Robert Lupinacci; Carole A. Sable; Nicholas A. Kartsonis

AbstractIn a randomized study, caspofungin was compared with amphotericin B for the treatment of invasive candidiasis in a total of 239 adults from 56 sites in 20 countries. This study provided a unique opportunity to assess the frequency and outcome of invasive candidiasis caused by different Candida species worldwide, and the results are presented here. Efficacy was primarily assessed at the end of intravenous therapy using a modified intent-to-treat (MITT) analysis. This analysis was performed on 224 of the 239 patients enrolled in the study. Attempts were made to collect baseline Candida isolates from all patients for species identification at a central laboratory. Yeasts were identified to the species level using two commercial systems and microscopic examination. Viable baseline isolates were recovered from 210 of the 224 (94%) patients included in the MITT analysis. Candida albicans was the most frequently isolated species in all regions and was responsible for 45% of cases overall. Nevertheless, the majority of cases of infection were caused by non-albicans Candida species. In the USA and Canada, Candida glabrata was the second most commonly isolated pathogen (18%). In contrast, Candida parapsilosis and Candida tropicalis accounted for 55% of cases in Latin America. Outcomes were comparable for patients treated with caspofungin (74% overall; 64% and 80% for infections due to Candida albicans and non-albicans species) and amphotericin B (62% overall; 58% and 68% for infections due to Candida albicans and non-albicans species), and were generally similar across continents. The distribution of Candida species isolated from patients enrolled in a clinical trial may not be representative of pathogens causing invasive candidiasis in the general population. Nevertheless, our findings may affect the regional choice of empirical antifungal therapy for seriously ill patients with suspected or documented invasive candidiasis since different Candida species have varying susceptibility to conventional antifungal drugs.


Journal of Clinical Microbiology | 2009

Wild-Type MIC Distribution and Epidemiological Cutoff Values for Aspergillus fumigatus and Three Triazoles as Determined by the Clinical and Laboratory Standards Institute Broth Microdilution Methods

M. A. Pfaller; Daniel J. Diekema; Mahmoud A. Ghannoum; John H. Rex; Barbara D. Alexander; David R. Andes; Steven D. Brown; Vishnu Chaturvedi; Ana Espinel-Ingroff; Cynthia L. Fowler; Elizabeth M. Johnson; Cynthia C. Knapp; Mary Motyl; Luis Ostrosky-Zeichner; Daniel J. Sheehan; Thomas J. Walsh

ABSTRACT Antifungal susceptibility testing of Aspergillus species has been standardized by both the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Recent studies suggest the emergence of strains of Aspergillus fumigatus with acquired resistance to azoles. The mechanisms of resistance involve mutations in the cyp51A (sterol demethylase) gene, and patterns of azole cross-resistance have been linked to specific mutations. Studies using the EUCAST broth microdilution (BMD) method have defined wild-type (WT) MIC distributions, epidemiological cutoff values (ECVs), and cross-resistance among the azoles. We tested a collection of 637 clinical isolates of A. fumigatus for which itraconazole MICs were ≤2 μg/ml against posaconazole and voriconazole using the CLSI BMD method. An ECV of ≤1 μg/ml encompassed the WT population of A. fumigatus for itraconazole and voriconazole, whereas an ECV of ≤0.25 μg/ml was established for posaconazole. Our results demonstrate that the WT distribution and ECVs for A. fumigatus and the mold-active triazoles were the same when determined by the CLSI or the EUCAST BMD method. A collection of 43 isolates for which itraconazole MICs fell outside of the ECV were used to assess cross-resistance. Cross-resistance between itraconazole and posaconazole was seen for 53.5% of the isolates, whereas cross-resistance between itraconazole and voriconazole was apparent in only 7% of the isolates. The establishment of the WT MIC distribution and ECVs for the azoles and A. fumigatus will be useful in resistance surveillance and is an important step toward the development of clinical breakpoints.


Diagnostic Microbiology and Infectious Disease | 2011

Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria

Michael A. Pfaller; David R. Andes; Maiken Cavling Arendrup; Daniel J. Diekema; Ana Espinel-Ingroff; Barbara D. Alexander; Steven D. Brown; Vishnu Chaturvedi; Cynthia L. Fowler; Mahmoud A. Ghannoum; Elizabeth M. Johnson; Cynthia C. Knapp; Mary Motyl; Luis Ostrosky-Zeichner; Thomas J. Walsh

We reassessed the Clinical and Laboratory Standards Institute (CLSI) clinical breakpoints (CBPs) for voriconazole. We examined i) the essential (EA: ±2 dilutions) and categorical agreement between 24-h CLSI and EUCAST methods for voriconazole testing of Candida, ii) wild-type (WT) MICs and epidemiologic cutoff values (ECVs) for voriconazole by both CLSI and EUCAST methods, and iii) correlation of MICs with outcomes from previously published data using CLSI methods. We applied these findings to propose new 24-h species-specific CLSI CBPs. Adjusted 24-h CBPs for voriconazole and C. albicans, C. tropicalis, and C. parapsilosis (susceptible, ≤ 0.125 μg/mL; intermediate, 0.25-0.5 μg/mL; resistant, ≥ 1 μg/mL) should be more sensitive for detecting emerging resistance among common Candida species and provide consistency with EUCAST CBPs. In the absence of CBPs for voriconazole and C. glabrata (and less common species), we recommend that their respective ECVs be used to detect the emergence of non-WT strains.


Antimicrobial Agents and Chemotherapy | 2012

In Vitro Activity of MK-7655, a Novel β-Lactamase Inhibitor, in Combination with Imipenem against Carbapenem-Resistant Gram-Negative Bacteria

Elizabeth B. Hirsch; Kimberly R. Ledesma; Kai Tai Chang; Michael Schwartz; Mary Motyl; Vincent H. Tam

ABSTRACT Carbapenem-resistant bacteria represent a significant treatment challenge due to the lack of active antimicrobials available. MK-7655 is a novel β-lactamase inhibitor under clinical development. We investigated the combined killing activity of imipenem and MK-7655 against four imipenem-resistant bacterial strains, using a mathematical model previously evaluated in our laboratory. Time-kill studies (TKS) were conducted with imipenem and MK-7655 against a KPC-2-producing Klebsiella pneumoniae isolate (KP6339) as well as 3 Pseudomonas aeruginosa isolates (PA24226, PA24227, and PA24228) with OprD porin deletions and overexpression of AmpC. TKS were performed using 25 clinically achievable concentration combinations in a 5-by-5 array. Bacterial burden at 24 h was determined in triplicate by quantitative culture and mathematically modeled using a three-dimensional response surface. Mathematical model assessments were evaluated experimentally using clinically relevant dosing regimens of imipenem, with or without MK-7655, in a hollow-fiber infection model (HFIM). The combination of imipenem and MK-7655 was synergistic for all strains. Interaction indices were as follows: for KP6339, 0.50 (95% confidence interval [CI], 0.42 to 0.58); for PA24226, 0.60 (95% CI, 0.58 to 0.62); for PA24227, 0.70 (95% CI, 0.66 to 0.74); and for PA24228, 0.55 (95% CI, 0.49 to 0.61). In the HFIM, imipenem plus MK-7655 considerably reduced the bacterial burden at 24 h, while failure with imipenem alone was seen against all isolates. Sustained suppression of bacterial growth at 72 h was achieved with simulated doses of 500 mg imipenem plus 500 mg MK-7655 in 2 (KP6339 and PA24227) strains, and it was achieved in an additional strain (PA24228) when the imipenem dose was increased to 1,000 mg. Additional studies are being conducted to determine the optimal dose and combinations to be used in clinical investigations.


European Journal of Clinical Microbiology & Infectious Diseases | 2005

Bowel colonization with resistant gram-negative bacilli after antimicrobial therapy of intra-abdominal infections: observations from two randomized comparative clinical trials of ertapenem therapy

Mark J. DiNubile; Ian R. Friedland; Christina Y. Chan; Mary Motyl; Hilde Giezek; Malathi Shivaprakash; Robert A. Weinstein; John P. Quinn

The selection of resistant gram-negative bacilli by broad-spectrum antibiotic use is a major issue in infection control. The aim of this comparative study was to assess the impact of different antimicrobial regimens commonly used to treat intra-abdominal infections on the susceptibility patterns of gram-negative bowel flora after completion of therapy. In two international randomized open-label trials with laboratory blinding, adults with complicated intra-abdominal infection requiring surgery received piperacillin-tazobactam (OASIS 1) or ceftriaxone/metronidazole (OASIS II) versus ertapenem for 4–14 days. Rectal swabs were obtained at baseline, end of therapy, and 2 weeks post-therapy. Escherichia coli and Klebsiella spp. were tested for production of extended-spectrum β-lactamase (ESBL). Enterobacteriaceae resistant to the agent used were recovered from 19 of 156 (12.2%) piperacillin-tazobactam recipients at the end of therapy compared to 1 (0.6%) patient at baseline (p<0.001) in OASIS I, and from 33 of 193 (17.1%) ceftriaxone/metronidazole recipients at the end of therapy compared to 5 (2.6%) patients at baseline (p<0.001) in OASIS II. Ertapenem-resistant Enterobacteriaceae were recovered from 1 of 155 and 1 of 196 ertapenem recipients at the end of therapy versus 0 and 1 ertapenem recipients at baseline in OASIS I and II, respectively. Resistant Enterobacteriaceae emerged significantly less often during treatment with ertapenem than with the comparator in both OASIS I (p<0.001) and OASIS II (p<0.001). The prevalence of ESBL-producers increased significantly during therapy in OASIS II among 193 ceftriaxone/metronidazole recipients (from 4 [2.1%] to 18 [9.3%]) (p<0.001), whereas no ertapenem recipient was colonized with an ESBL-producer at the end of therapy in either study. Selection for imipenem-resistant Pseudomonas aeruginosa was uncommon in all treatment groups. In these studies, the frequency of bowel colonization with resistant Enterobacteriaceae substantially increased in patients treated with either piperacillin-tazobactam or ceftriaxone/metronidazole, but not in patients treated with ertapenem.

Collaboration


Dive into the Mary Motyl's collaboration.

Researchain Logo
Decentralizing Knowledge