Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Pat Meaney is active.

Publication


Featured researches published by Mary Pat Meaney.


British Journal of Nutrition | 2013

Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults.

Lynn Cialdella-Kam; David C. Nieman; Wei Sha; Mary Pat Meaney; Amy M. Knab; R. Andrew Shanely

Quercetin, a flavonol in fruits and vegetables, has been demonstrated to have antioxidant, anti-inflammatory and immunomodulating influences. The purpose of the present study was to determine if quercetin, vitamin C and niacin supplements (Q-500 = 500 mg/d of quercetin, 125 mg/d of vitamin C and 5 mg/d of niacin; Q-1000 = 1000 mg/d of quercetin, 250 mg/d of vitamin C and 10 mg/d of niacin) would alter small-molecule metabolite profiles and serum quercetin conjugate levels in adults. Healthy adults (fifty-eight women and forty-two men; aged 40-83 years) were assigned using a randomised double-blinded placebo-controlled trial to one of three supplement groups (Q-1000, Q-500 or placebo). Overnight fasted blood samples were collected at 0, 1 and 3 months. Quercetin conjugate concentrations were measured using ultra-performance liquid chromatography (UPLC)-MS/MS, and metabolite profiles were measured using two MS platforms (UPLC-quadrupole time-of-flight MS (TOFMS) and GC-TOFMS). Statistical procedures included partial least square discriminant analysis (PLS-DA) and linear mixed model analysis with repeated measures. After accounting for age, sex and BMI, quercetin supplementation was associated with significant shifts in 163 metabolites/quercetin conjugates (false discovery rate, P<0·05). The top five metabolite shifts were an increase in serum guaiacol, 2-oxo-4-methylthiobutanoic acid, allocystathionine and two bile acids. Inflammatory and oxidative stress metabolites were not affected. PLS-DA revealed a clear separation only between the 1000 mg/d and placebo groups (Q(2)Y = 0·763). The quercetin conjugate, isorhamnetin-3-glucuronide, had the highest concentration at 3 months followed by quercetin-3-glucuronide, quercetin-3-sulphate and quercetin diglucuronide. In human subjects, long-term quercetin supplementation exerts disparate and wide-ranging metabolic effects and changes in quercetin conjugate concentrations. Metabolic shifts were apparent at the 1000 mg/d dose; further research is required to understand the health implications of these shifts.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

Metabolomics approach to assessing plasma 13- and 9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling.

David C. Nieman; R. Andrew Shanely; Beibei Luo; Mary Pat Meaney; Dustin Dew; Kirk L. Pappan

Bioactive oxidized linoleic acid metabolites (OXLAMs) include 13- and 9-hydroxy-octadecadienoic acid (13-HODE + 9-HODE) and have been linked to oxidative stress, inflammation, and numerous pathological and physiological states. The purpose of this study was to measure changes in plasma 13-HODE + 9-HODE following a 75-km cycling bout and identify potential linkages to linoleate metabolism and established biomarkers of oxidative stress (F2-isoprostanes) and inflammation (cytokines) using a metabolomics approach. Trained male cyclists (N = 19, age 38.0 ± 1.6 yr, wattsmax 304 ± 10.5) engaged in a 75-km cycling time trial on their own bicycles using electromagnetically braked cycling ergometers (2.71 ± 0.07 h). Blood samples were collected preexercise, immediately post-, 1.5 h post-, and 21 h postexercise, and analyzed for plasma cytokines (IL-6, IL-8, IL-10, tumor necrosis factor-α, monocyte chemoattractant protein-1, granulocyte colony-stimulating factor), F2-isoprostanes, and shifts in metabolites using global metabolomics procedures with gas chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS). 13-HODE + 9-HODE increased 3.1-fold and 1.7-fold immediately post- and 1.5 h postexercise (both P < 0.001) and returned to preexercise levels by 21-h postexercise. Post-75-km cycling plasma levels of 13-HODE + 9-HODE were not significantly correlated with increases in plasma cytokines but were positively correlated with postexercise F2-isoprostanes (r = 0.75, P < 0.001), linoleate (r = 0.54, P = 0.016), arachidate (r = 0.77, P < 0.001), 12,13-dihydroxy-9Z-octadecenoate (12,13-DiHOME) (r = 0.60, P = 0.006), dihomo-linolenate (r = 0.57, P = 0.011), and adrenate (r = 0.56, P = 0.013). These findings indicate that prolonged and intensive exercise caused a transient, 3.1-fold increase in the stable linoleic acid oxidation product 13-HODE + 9-HODE and was related to increases in F2-isoprostanes, linoleate, and fatty acids in the linoleate conversion pathway. These data support the use of 13-HODE + 9-HODE as an oxidative stress biomarker in acute exercise investigations.


Brain Behavior and Immunity | 2014

Immune and inflammation responses to a 3-day period of intensified running versus cycling

David C. Nieman; Beibei Luo; Didier Dréau; Dru A. Henson; R. Andrew Shanely; Dustin Dew; Mary Pat Meaney

Functional overreaching has been linked to alterations in immunity and host pathogen defense, but little is known as to whether or not running and cycling evoke different responses. This study compared inflammation, muscle damage and soreness, and innate immune function responses to a 3-day period of intensified exercise in trained long distance runners (N=13, age 34.4±2.4year) and cyclists (N=22, age 36.6±1.7year, P=0.452). Upper respiratory tract infection (URTI) symptomatology was monitored for 12weeks using the Wisconsin Upper Respiratory Symptom Survey (WURSS), and subjects from both athletic groups came to the lab during week five and exercised 2.5h/day for 3days in a row at 70% VO2max. Blood samples were collected before and after the 3-day period of exercise, with recovery samples collected 1-, 14-, and 38h-post-exercise. Samples were analyzed for muscle damage [creatine kinase (CK), myoglobin (MYO)], inflammation (CRP, IL-6, IL-8, IL-10, MCP), and innate immunity [granulocyte and monocyte phagocytosis (GR-PHAG and MO-PHAG) and oxidative burst activity (GR-OBA and MO-OBA)]. Runners compared to cyclists experienced significantly more muscle damage (CK 133% and MYO 404% higher post-3days exercise), inflammation (CRP 87%, IL-6 256%, IL 8 61%, IL-10 32%, MCP 29%), and delayed onset of muscle soreness (DOMS, 87%). The 3-day period of exercise caused significant downturns in GR-PHAG, MO-PHAG, GR-OBA, MO-OBA by 14- and 38h-recovery, but the pattern of change did not differ between groups. No group differences were measured for 12-week URTI severity (18.3±5.6 and 16.6±4.0, P=0.803) and symptom scores (33.4±12.6 and 24.7±5.8, P=0.477). These data indicate that a 3-day period of functional overreaching results in substantially more muscle damage and soreness, and systemic inflammation in runners compared to cyclists, but without group differences for 12-week URTI symptomatology and post-exercise decrements in innate immune function.


PLOS ONE | 2014

Influence of Pistachios on Performance and Exercise-Induced Inflammation, Oxidative Stress, Immune Dysfunction, and Metabolite Shifts in Cyclists: A Randomized, Crossover Trial

David C. Nieman; Johannes Scherr; Beibei Luo; Mary Pat Meaney; Didier Dréau; Wei Sha; Dustin Dew; Dru A. Henson; Kirk L. Pappan

Objectives Pistachio nut ingestion (3 oz./d, two weeks) was tested for effects on exercise performance and 21-h post-exercise recovery from inflammation, oxidative stress, immune dysfunction, and metabolite shifts. Methods Using a randomized, crossover approach, cyclists (N = 19) engaged in two 75-km time trials after 2-weeks pistachio or no pistachio supplementation, with a 2-week washout period. Subjects came to the lab in an overnight fasted state, and ingested water only or 3 oz. pistachios with water before and during exercise. Blood samples were collected 45 min pre-exercise, and immediately post-, 1.5-h post-, and 21-h post-exercise, and analyzed for plasma cytokines, C-reactive protein (CRP), F2-isoprostanes (F2-IsoP), granulocyte phagocytosis (GPHAG) and oxidative burst activity (GOBA), and shifts in metabolites. Results Performance time for the 75-km time trial was 4.8% slower under pistachio conditions (2.84±0.11 and 2.71±0.07 h, respectively, P = 0.034). Significant time effects were shown for plasma cytokines, CRP, F2-IsoP, GPHAG, and GOBA, with few group differences. Metabolomics analysis revealed 423 detectable compounds of known identity, with significant interaction effects for 19 metabolites, especially raffinose, (12Z)-9,10-Dihydroxyoctadec-12-enoate (9,10-DiHOME), and sucrose. Dietary intake of raffinose was 2.19±0.15 and 0.35±0.08 mg/d during the pistachio and no pistachio periods, and metabolomics revealed that colon raffinose and sucrose translocated to the circulation during exercise due to increased gut permeability. The post-exercise increase in plasma raffinose correlated significantly with 9,10-DiHOME and other oxidative stress metabolites. Conclusions In summary, 2-weeks pistachio nut ingestion was associated with reduced 75-km cycling time trial performance and increased post-exercise plasma levels of raffinose, sucrose, and metabolites related to leukotoxic effects and oxidative stress. Trial Registration ClinicalTrials.gov NCT01821820


Nutrition Journal | 2013

A commercialized dietary supplement alleviates joint pain in community adults: a double-blind, placebo-controlled community trial

David C. Nieman; R. Andrew Shanely; Beibei Luo; Dustin Dew; Mary Pat Meaney; Wei Sha

BackgroundThe purpose of this study was to assess the effect of 8-weeks ingestion of a commercialized joint pain dietary supplement (InstaflexTM Joint Support, Direct Digital, Charlotte, NC) compared to placebo on joint pain, stiffness, and function in adults with self-reported joint pain. InstaflexTM is a joint pain supplement containing glucosamine sulfate, methylsufonlylmethane (MSM), white willow bark extract (15% salicin), ginger root concentrate, boswella serrata extract (65% boswellic acid), turmeric root extract, cayenne, and hyaluronic acid.MethodsSubjects included 100 men and women, ages 50-75 years, with a history (>3 months) of joint pain, and were randomized to Instaflex™ or placebo (3 colored gel capsules per day for 8 weeks, double-blind administration). Subjects agreed to avoid the use of non-steroidal anti-inflammatory drugs (NSAID) and all other medications and supplements targeted for joint pain. Primary outcome measures were obtained pre- and post-study and included joint pain severity, stiffness, and function (Western Ontario and McMaster Universities [WOMAC]), and secondary outcome measures included health-related quality of life (Short Form 36 or SF-36), systemic inflammation (serum C-reactive protein and 9 plasma cytokines), and physical function (6-minute walk test). Joint pain symptom severity was assessed bi-weekly using a 12-point Likert visual scale (12-VS).ResultsJoint pain severity was significantly reduced in Instaflex™ compared to placebo (8-week WOMAC, ↓37% versus ↓16%, respectively, interaction effect P = 0.025), with group differences using the 12-VS emerging by week 4 of the study (interaction effect, P = 0.0125). Improvements in ability to perform daily activities and stiffness scores in Instaflex™ compared to placebo were most evident for the 74% of subjects reporting knee pain (8-week WOMAC function score, ↓39% versus ↓14%, respectively, interaction effect P = 0.027; stiffness score, ↓30% versus ↓12%, respectively, interaction effect P = 0.081). Patterns of change in SF-36, systemic inflammation biomarkers, and the 6-minute walk test did not differ significantly between groups during the 8-week studyConclusionsResults from this randomized, double blind, placebo-controlled community trial support the use of the Instaflex™ dietary supplement in alleviating joint pain severity in middle-aged and older adults, with mitigation of difficulty performing daily activities most apparent in subjects with knee pain.Trial registrationClinicalTrials.gov Identifier: NCT01956500


Nutrients | 2016

A Mixed Flavonoid-Fish Oil Supplement Induces Immune-Enhancing and Anti-Inflammatory Transcriptomic Changes in Adult Obese and Overweight Women—A Randomized Controlled Trial

Lynn Cialdella-Kam; David C. Nieman; Amy M. Knab; R. Shanely; Mary Pat Meaney; Fuxia Jin; Wei Sha; Sujoy Ghosh

Flavonoids and fish oils have anti-inflammatory and immune-modulating influences. The purpose of this study was to determine if a mixed flavonoid-fish oil supplement (Q-Mix; 1000 mg quercetin, 400 mg isoquercetin, 120 mg epigallocatechin (EGCG) from green tea extract, 400 mg n3-PUFAs (omega-3 polyunsaturated fatty acid) (220 mg eicosapentaenoic acid (EPA) and 180 mg docosahexaenoic acid (DHA)) from fish oil, 1000 mg vitamin C, 40 mg niacinamide, and 800 µg folic acid) would reduce complications associated with obesity; that is, reduce inflammatory and oxidative stress markers and alter genomic profiles in overweight women. Overweight and obese women (n = 48; age = 40–70 years) were assigned to Q-Mix or placebo groups using randomized double-blinded placebo-controlled procedures. Overnight fasted blood samples were collected at 0 and 10 weeks and analyzed for cytokines, C-reactive protein (CRP), F2-isoprostanes, and whole-blood-derived mRNA, which was assessed using Affymetrix HuGene-1_1 ST arrays. Statistical analysis included two-way ANOVA models for blood analytes and gene expression and pathway and network enrichment methods for gene expression. Plasma levels increased with Q-Mix supplementation by 388% for quercetin, 95% for EPA, 18% for DHA, and 20% for docosapentaenoic acid (DPA). Q-Mix did not alter plasma levels for CRP (p = 0.268), F2-isoprostanes (p = 0.273), and cytokines (p > 0.05). Gene set enrichment analysis revealed upregulation of pathways in Q-Mix vs. placebo related to interferon-induced antiviral mechanism (false discovery rate, FDR < 0.001). Overrepresentation analysis further disclosed an inhibition of phagocytosis-related inflammatory pathways in Q-Mix vs. placebo. Thus, a 10-week Q-Mix supplementation elicited a significant rise in plasma quercetin, EPA, DHA, and DPA, as well as stimulated an antiviral and inflammation whole-blood transcriptomic response in overweight women.


Journal of Proteome Research | 2015

Metabolomics-Based Analysis of Banana and Pear Ingestion on Exercise Performance and Recovery

David C. Nieman; Nicholas D. Gillitt; Wei Sha; Mary Pat Meaney; Casey John; Kirk L. Pappan; Jason M. Kinchen

Bananas and pears vary in sugar and phenolic profiles, and metabolomics was utilized to measure their influence on exercise performance and recovery. Male athletes (N = 20) cycled for 75 km while consuming water (WATER), bananas (BAN), or pears (PEAR) (0.6 g carbohydrate/kg each hour) in randomized order. UPLC-MS/MS and the library of purified standards maintained by Metabolon (Durham, NC) were used to analyze metabolite shifts in pre- and postexercise (0-h, 1.5-h, 21-h) blood samples. Performance times were 5.0% and 3.3% faster during BAN and PEAR versus WATER (P = 0.018 and P = 0.091, respectively), with reductions in cortisol, IL-10, and total leukocytes, and increases in blood glucose, insulin, and FRAP. Partial Least Square Discriminant Analysis (PLS-DA) showed a distinct separation between trials immediately (R(2)Y = 0.877, Q(2)Y = 0.457) and 1.5-h postexercise (R(2)Y = 0.773, Q(2)Y = 0.441). A total of 107 metabolites (primarily lipid-related) increased more than 2-fold during WATER, with a 48% and 52% reduction in magnitude during BAN and PEAR recovery (P < 0.001). Increases in metabolites unique to BAN and PEAR included fructose and fruit constituents, and sulfated phenolics that were related to elevated FRAP. These data indicate that BAN and PEAR ingestion improves 75-km cycling performance, attenuates fatty acid utilization and oxidation, and contributes unique phenolics that augment antioxidant capacity.


Journal of Sports Sciences | 2014

Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes

R. Andrew Shanely; David C. Nieman; Amy M. Knab; Nicholas D. Gillitt; Mary Pat Meaney; Fuxia Jin; Wei Sha; Lynn Cialdella-Kam

Abstract Incidence of vitamin D deficiency is increasing worldwide. The purpose of this study was to determine if supplementation with vitamin D2 from Portobello mushroom powder would enhance skeletal muscle function and attenuate exercise-induced muscle damage in low vitamin D status high school athletes. Participants were randomised to Portobello mushroom powder (600 IU/d vitamin D2) or placebo for 6 weeks. Participants then completed a 1.5-h exercise session designed to induce skeletal muscle damage. Blood samples and measures of skeletal muscle function were taken pre-supplementation, post-supplementation/pre-exercise and post-exercise. Six weeks supplementation with vitamin D2 increased serum 25(OH)D2 by 9.9-fold and decreased serum 25(OH)D3 by 28%. Changes in skeletal muscle function and circulating markers of skeletal muscle damage did not differ between groups. In conclusion, 600 IU/d vitamin D2 increased 25(OH)D2 with a concomitant decrease in 25(OD)D3, with no effect on muscular function or exercise-induced muscle damage in high school athletes.


Nutrients | 2013

Vitamin D2 supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes.

David C. Nieman; Nicholas D. Gillitt; R. Andrew Shanely; Dustin Dew; Mary Pat Meaney; Beibei Luo

This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n = 13) and placebo (n = 15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (p < 0.001, p = 0.036, respectively), with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p = 0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p < 0.001), with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day) significantly increased 25(OH)D2 and decreased 25(OH)D3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise.


Frontiers in Nutrition | 2015

Post-exercise skeletal muscle glycogen related to plasma cytokines and muscle IL-6 protein content, but not muscle cytokine mRNA expression

David C. Nieman; Kevin A. Zwetsloot; Mary Pat Meaney; Dominic D. Lomiwes; Suzanne M. Hurst; Roger D. Hurst

Objectives The purpose of this study was to correlate post-exercise muscle glycogen levels with changes in plasma cytokine, and muscle mRNA cytokine expression and protein content. Methods Twenty-four male runners (age 36.5 ± 1.8 years, VO2max 60.0 ± 1.5 mL⋅kg−1 ⋅ min−1) ran twice (separated by 4 weeks) on treadmills to exhaustion at 70% VO2max (average time and distance of 2.24 ± 0.09 h and 24.9 ± 1.1 km). Muscle biopsies from the vastus lateralis and blood samples were collected before and after each run, with IL-6, IL-8, and MCP-1 measured in muscle (mRNA and protein) and plasma. Data from the two runs were averaged. Results Participants experienced a 35.3 ± 4.2% decrease (P < 0.001) in skeletal muscle glycogen content (67.5 ± 2.8 to 44.3 ± 3.7 mmol⋅kg−1 wet weight). Muscle mRNA expression for IL-6, IL-8, and MCP-1 increased 7.34 ± 0.90-, 13.9 ± 2.3-, and 4.10 ± 0.60-fold, respectively (all, P < 0.001). Skeletal muscle IL-6, IL-8, and MCP-1 protein content increased 35.8 ± 10.6, 80.6 ± 12.1, and 105 ± 17.9%, respectively (all, P ≤ 0.005). Plasma IL-6, IL-8, and MCP-1 increased 47.1 ± 10.0-, 2.6 ± 0.3-, and 1.6 ± 0.1-fold, respectively (all, P < 0.001). Post-exercise muscle glycogen concentrations were negatively correlated with run time to exhaustion (r = −0.70, P < 0.001), and changes in muscle IL-6 protein content (r = −0.44, P = 0.049), plasma IL-6 (r = −0.72, P < 0.001), IL-8 (r = −0.60, P = 0.002), and MCP-1 (r = −0.589, P = 0.002), but not with changes in muscle IL-8 and MCP-1 protein content, or muscle mRNA expression for IL-6, IL-8, and MCP-1. Conclusion Prolonged and intensive running increased muscle mRNA expression, muscle protein content, and plasma levels for IL-6, IL-8, and MCP-1, and post-run muscle glycogen levels were most strongly related to plasma cytokine levels.

Collaboration


Dive into the Mary Pat Meaney's collaboration.

Top Co-Authors

Avatar

David C. Nieman

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

R. Andrew Shanely

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Amy M. Knab

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Dustin Dew

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Wei Sha

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Dru A. Henson

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Lynn Cialdella-Kam

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Beibei Luo

Shanghai University of Sport

View shared research outputs
Top Co-Authors

Avatar

Kevin A. Zwetsloot

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Casey John

Appalachian State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge