Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. Andrew Shanely is active.

Publication


Featured researches published by R. Andrew Shanely.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1998

Exercise training improves myocardial tolerance to in vivo ischemia-reperfusion in the rat

Scott K. Powers; Haydar A. Demirel; Heather K. Vincent; Jeff S. Coombes; Hisashi Naito; Karyn L. Hamilton; R. Andrew Shanely; J. Jessup

Experimental studies examining the effects of regular exercise on cardiac responses to ischemia and reperfusion (I/R) are limited. Therefore, these experiments examined the effects of endurance exercise training on myocardial biochemical and physiological responses during in vivo I/R. Female Sprague-Dawley rats (4 mo old) were randomly assigned to either a sedentary control group or to an exercise training group. After a 10-wk endurance exercise training program, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was achieved by a ligature around the left coronary artery; occlusion was maintained for 20 min, followed by a 10-min period of reperfusion. Compared with untrained, exercise-trained animals maintained higher ( P < 0.05) peak systolic blood pressure throughout I/R. Training resulted in a significant ( P < 0.05) increase in ventricular nonprotein thiols, heat shock protein (HSP) 72, and the activities of superoxide dismutase (SOD), phosphofructokinase (PFK), and lactate dehydrogenase. Furthermore, compared with untrained controls, left ventricles from trained animals exhibited lower levels ( P < 0.05) of lipid peroxidation after I/R. These data demonstrate that endurance exercise training improves myocardial contractile performance and reduces lipid peroxidation during I/R in the rat in vivo. It appears likely that the improvement in the myocardial responses to I/R was related to training-induced increases in nonprotein thiols, HSP72, and the activities of SOD and PFK in the myocardium.Experimental studies examining the effects of regular exercise on cardiac responses to ischemia and reperfusion (I/R) are limited. Therefore, these experiments examined the effects of endurance exercise training on myocardial biochemical and physiological responses during in vivo I/R. Female Sprague-Dawley rats (4 mo old) were randomly assigned to either a sedentary control group or to an exercise training group. After a 10-wk endurance exercise training program, animals were anesthetized and mechanically ventilated, and the chest was opened by thoracotomy. Coronary occlusion was achieved by a ligature around the left coronary artery; occlusion was maintained for 20 min, followed by a 10-min period of reperfusion. Compared with untrained, exercise-trained animals maintained higher (P < 0.05) peak systolic blood pressure throughout I/R. Training resulted in a significant (P < 0.05) increase in ventricular nonprotein thiols, heat shock protein (HSP) 72, and the activities of superoxide dismutase (SOD), phosphofructokinase (PFK), and lactate dehydrogenase. Furthermore, compared with untrained controls, left ventricles from trained animals exhibited lower levels (P < 0. 05) of lipid peroxidation after I/R. These data demonstrate that endurance exercise training improves myocardial contractile performance and reduces lipid peroxidation during I/R in the rat in vivo. It appears likely that the improvement in the myocardial responses to I/R was related to training-induced increases in nonprotein thiols, HSP72, and the activities of SOD and PFK in the myocardium.


Medicine and Science in Sports and Exercise | 2010

Quercetin's Influence On Exercise Performance And Muscle Mitochondrial Biogenesis

David C. Nieman; Ashley S. Williams; R. Andrew Shanely; Fuxia Jin; Steven R. McAnulty; N. Travis Triplett; Melanie D. Austin; Dru A. Henson

PURPOSE To determine the influence of 2 wk of quercetin (Q; 1000 mg x d(-1)) compared with placebo (P) supplementation on exercise performance and skeletal muscle mitochondrial biogenesis in untrained, young adult males (N = 26, age = 20.2 +/- 0.4 yr, VO2max = 46.3 +/- 1.2 mL x kg(-1) x min(-1)). METHODS Using a randomized, crossover design with a 2-wk washout period, subjects provided blood and muscle biopsy samples presupplementation and postsupplementation periods and were given 12-min time trials on 15% graded treadmills after 60 min of moderate exercise preloads at 60% VO2max. RESULTS Plasma Q levels rose significantly in Q versus P during the 2-wk supplementation period (interaction P value <0.001). During the 12-min trial, the net change in distance achieved was significantly greater during Q (2.9%) compared with P (-1.2%; 29.5 +/- 11.5 vs -11.9 +/- 16.0 m, respectively, P = 0.038). Skeletal muscle messenger RNA expression tended to increase (range = 16-25%) during Q versus P for sirtuin 1 (interaction effect, P = 0.152), peroxisome proliferator-activated receptor gamma coactivator-1alpha (P = 0.192), cytochrome c oxidase (P = 0.081), and citrate synthase (P = 0.166). Muscle mitochondrial DNA (relative copy number per diploid nuclear genome) increased 140 +/- 154 (4.1%) with Q compared with -225 +/- 157 (6.0% decrease) with P (P = 0.098). CONCLUSIONS In summary, 1000 mg x d(-1) Q versus P for 2 wk by untrained males was associated with a small but significant improvement in 12-min treadmill time trial performance and modest but insignificant increases in the relative copy number of mitochondrial DNA and messenger RNA levels of four genes related to mitochondrial biogenesis.


Medicine and Science in Sports and Exercise | 2009

Effects of quercetin and EGCG on mitochondrial biogenesis and immunity.

David C. Nieman; Dru A. Henson; Kendra R. Maxwell; Ashley S. Williams; Steven R. McAnulty; Fuxia Jin; R. Andrew Shanely; Thomas Lines

PURPOSE To test the influence of 1000 mg of quercetin (Q) with or without 120 mg of epigallocatechin 3-gallate (EGCG), 400 mg of isoquercetin, and 400 mg of eicosapentaenoic acid and docosahexaenoic acid (Q-EGCG) on exercise performance, muscle mitochondrial biogenesis, and changes in measures of immunity and inflammation before and after a 3-d period of heavy exertion. METHODS Trained cyclists (N = 39) were randomized to placebo (P), Q, or Q-EGCG and ingested supplements in a double-blinded fashion for 2 wk before, during, and 1 wk after a 3-d period in which subjects cycled for 3 h x d(-1) at approximately 57% Wmax. Blood, saliva, and muscle biopsy samples were collected before and after 2 wk of supplementation and immediately after the exercise bout on the third day. Blood and saliva samples were also collected 14 h after exercise. RESULTS Two-week supplementation resulted in a significant increase in plasma quercetin for Q and Q-EGCG and granulocyte oxidative burst activity (GOBA) in Q-EGCG. Immediately after the third exercise bout, significant decreases for C-reactive protein (CRP), and plasma interleukin 6 (IL-6) and interleukin 10 (IL-10) were measured in Q-EGCG compared with P. Granulocyte colony-stimulating factor and CRP were reduced in Q-EGCG 14 h after exercise. No group differences were measured in muscle messenger RNA expression for peroxisome proliferator-activated receptor gamma coactivator alpha, citrate synthase, or cytochrome c. CONCLUSIONS Two-week supplementation with Q-EGCG was effective in augmenting GOBA andin countering inflammation after 3 d of heavy exertion in trained cyclists.


European Journal of Applied Physiology | 2000

Short-term exercise training improves diaphragm antioxidant capacity and endurance

Heather K. Vincent; Scott K. Powers; Darby J. Stewart; Haydar A. Demirel; R. Andrew Shanely; Hisashi Naito

Abstract These experiments tested the hypothesis that short-term endurance exercise training would rapidly improve (within 5 days) the diaphragm oxidative/antioxidant capacity and protect the diaphragm against contraction-induced oxidative stress. To test this postulate, male Sprague-Dawley rats (6 weeks old) ran on a motorized treadmill for 5 consecutive days (40–60 min · day−1) at approximately 65% maximal oxygen uptake. Costal diaphragm strips were excised from both sedentary control (CON, n=14) and trained (TR, n=13) animals 24 h after the last exercise session, for measurement of in vitro contraction properties and selected biochemical parameters of oxidative/antioxidant capacity. Training did not alter diaphragm force-frequency characteristics over a full range of submaximal and maximal stimulation frequencies (P > 0.05). In contrast, training improved diaphragm resistance to fatigue as contraction forces were better-maintained by the diaphragms of the TR animals during a submaximal 60-min fatigue protocol (P < 0.05). Following the fatigue protocol, diaphragm strips from the TR animals contained 30% lower concentrations of lipid hydroperoxides compared to CON (P < 0.05). Biochemical analysis revealed that exercise training increased diaphragm oxidative and antioxidant capacity (citrate synthase activity +18%, catalase activity +24%, total superoxide dismutase activity +20%, glutathione concentration +10%) (P < 0.05). These data indicate that short-term exercise training can rapidly elevate oxidative capacity as well as enzymatic and non-enzymatic antioxidant defenses in the diaphragm. Furthermore, this up-regulation in antioxidant defenses would be accompanied by a reduction in contraction-induced lipid peroxidation and an increased fatigue resistance.


Free Radical Research | 2010

Quercetin supplementation does not alter antioxidant status in humans

R. Andrew Shanely; Amy M. Knab; David C. Nieman; Fuxia Jin; Steven R. McAnulty; Michael J. Landram

Abstract This study measured the influence of ingesting quercetin on plasma measures for oxidative stress and antioxidant capacity. Male and female subjects (n = 1002) varying in age (18–85 years) and body mass index (BMI) (16.7–52.7 kg/m2) were studied. Subjects were randomized to one of three groups using double-blinded methods: placebo, 500 mg or 1000 mg quercetin/day with 125 mg or 250 mg vitamin C/day, respectively. Pre- and post-study fasting blood samples show that plasma quercetin increased in a dose-responsive manner. The pattern of change in plasma F2-isoprostanes, oxidized low density lipoprotein, reduced glutathione, ferric reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) did not differ between supplementation groups or after adjustment for gender, age, BMI and disease status. In summary, quercetin supplementation over 12 weeks in doses of 500 mg or 1000 mg/day significantly increased plasma quercetin levels, but had no influence on several measures of oxidative stress and antioxidant capacity.


Journal of Interferon and Cytokine Research | 2012

Variance in the acute inflammatory response to prolonged cycling is linked to exercise intensity.

David C. Nieman; Manuela Konrad; Dru A. Henson; Krista Kennerly; R. Andrew Shanely

This study investigated the influence of age, body composition, physical fitness, training volume and intensity, and underlying systemic inflammation on exercise-induced inflammation and innate immune function in a heterogeneous group of cyclists. Subjects included 31 male cyclists (mean ± standard deviation, age 38.8 ± 10.6 years, body fat 17.8%± 5.6%, VO(2max) 55.8 ± 8.4 mL kg(-1) min(-1)) who cycled for 1.75 h at 60% watts(max) followed by a 10-km time trial (18.3 ± 0.3 min). Blood samples were collected pre-, post-, and 1-h-postexercise, and analyzed for WBCs, 9 cytokines [interleukin (IL)-6, tumor necrosis factor-alpha, granulocyte-macrophage colony-stimulating factor, interferon-γ, IL-1β, IL-2, IL-8, IL-10, and IL-12p70], and granulocyte and monocyte phagocytosis (GR-PHAG and MO-PHAG) and oxidative burst activity (GR-OBA and MO-OBA). Exercise-induced changes varied widely, with significant increases measured for 8 of 9 cytokines, GR-PHAG (mean change 99%) (95% confidence limits, 69%, 128%) and MO-PHAG (43%) (28%, 58%), and WBC (160%) (133%, 187%), and decreases for GR-OBA (-30%) (-43%,-16%) and MO-OBA (-23%) (-36%,-10%). Correlation and stepwise regression analysis revealed that changes in these variables were not related to age, body fat percentage, VO(2max), training volume, or pre-exercise C-reactive protein. Performance measures, specifically the average heart rate and rating of perceived exertion, were correlated with changes in several variables, including IL-8 (r=0.68 and 0.67, respectively, P<0.001) and IL-6 (r=0.51, P=0.004, and r=0.46, P=0.011, respectively). In summary, variance in exercise-induced inflammation and innate immunity in male cyclists in response to 2 h of endurance exercise is best explained by exercise intensity.


PLOS ONE | 2013

Influence of a Polyphenol-Enriched Protein Powder on Exercise-Induced Inflammation and Oxidative Stress in Athletes: A Randomized Trial Using a Metabolomics Approach

David C. Nieman; Nicholas D. Gillitt; Amy M. Knab; R. Andrew Shanely; Kirk L. Pappan; Fuxia Jin; Mary Ann Lila

Objectives Polyphenol supplementation was tested as a countermeasure to inflammation and oxidative stress induced by 3-d intensified training. Methods Water soluble polyphenols from blueberry and green tea extracts were captured onto a polyphenol soy protein complex (PSPC). Subjects were recruited, and included 38 long-distance runners ages 19–45 years who regularly competed in road races. Runners successfully completing orientation and baseline testing (N = 35) were randomized to 40 g/d PSPC (N = 17) (2,136 mg/d gallic acid equivalents) or placebo (N = 18) for 17 d using double-blinded methods and a parallel group design, with a 3-d running period inserted at day 14 (2.5 h/d, 70% VO2max). Blood samples were collected pre- and post-14 d supplementation, and immediately and 14 h after the third day of running in subjects completing all aspects of the study (N = 16 PSPC, N = 15 placebo), and analyzed using a metabolomics platform with GC-MS and LC-MS. Results Metabolites characteristic of gut bacteria metabolism of polyphenols were increased with PSPC and 3 d running (e.g., hippurate, 4-hydroxyhippurate, 4-methylcatechol sulfate, 1.8-, 1.9-, 2.5-fold, respectively, P<0.05), an effect which persisted for 14-h post-exercise. Fatty acid oxidation and ketogenesis were induced by exercise in both groups, with more ketones at 14-h post-exercise in PSPC (3-hydroxybutyrate, 1.8-fold, P<0.05). Established biomarkers for inflammation (CRP, cytokines) and oxidative stress (protein carbonyls) did not differ between groups. Conclusions PSPC supplementation over a 17-d period did not alter established biomarkers for inflammation and oxidative stress but was linked to an enhanced gut-derived phenolic signature and ketogenesis in runners during recovery from 3-d heavy exertion. Trial Registration ClinicalTrials.gov, U.S. National Institutes of Health, identifier: NCT01775384


Journal of Alternative and Complementary Medicine | 2012

Chia seed supplementation and disease risk factors in overweight women: a metabolomics investigation.

David C. Nieman; Nicholas D. Gillitt; Fuxia Jin; Dru A. Henson; Krista Kennerly; R. Andrew Shanely; Brandon Ore; MingMing Su; Sarah Schwartz

OBJECTIVE/SETTING This study assessed the effectiveness of milled and whole chia seed in altering disease risk factors in overweight, postmenopausal women using a metabolomics approach. DESIGN/INTERVENTION Subjects were randomized to chia seed (whole or milled) and placebo (poppy seed) groups, and under double-blinded procedures ingested 25 g chia seed or placebo supplements each day for 10 weeks. SUBJECTS Subjects included 62 overweight (body-mass index 25 kg/m(2) and higher), nondiseased, nonsmoking, postmenopausal women, ages 49-75 years, with analysis based on the 56 subjects who completed all phases of the study. OUTCOME MEASURES Pre- and poststudy measures included body mass and composition, blood pressure and augmentation index, serum lipid profile, inflammation markers from fasting blood samples, plasma fatty acids, and metabolic profiling using gas chromatography-mass spectrometry with multivariate statistical methods including principal component analysis and partial least-square discriminant analysis (PLS-DA). RESULTS Plasma α-linolenic acid (N=ALA) increased 58% (interaction effect, p=0.002) and eicosapentaenoic acid (EPA) 39% (p=0.016) in the milled chia seed group (N=14) compared to nonsignificant changes in the whole chia seed (N=16) and placebo (N=26) groups. Pre-to-post measures of body composition, inflammation, blood pressure, augmentation index, and lipoproteins did not differ between chia seed (whole or milled) and placebo groups (all interaction effects, p>0.05). Global metabolic difference scores for each group calculated through PLS-DA models were nonsignificant (Q(2)Y<0.40), and fold-changes for 28 targeted metabolites associated with inflammation and disease risk factors did not differ between groups. CONCLUSIONS Ingestion of 25 g/day milled chia seed compared to whole chia seed or placebo for 10 weeks by overweight women increased plasma ALA and EPA, but had no influence on inflammation or disease risk factors using both traditional and metabolomics-based measures.


Medicine and Science in Sports and Exercise | 2011

A 45-Minute Vigorous Exercise Bout Increases Metabolic Rate for 14 Hours

Amy M. Knab; R. Andrew Shanely; Karen D. Corbin; Fuxia Jin; Wei Sha; David C. Nieman

INTRODUCTION The magnitude and duration of the elevation in resting energy expenditure after vigorous exercise have not been measured in a metabolic chamber. This study investigated the effects of inserting a 45-min vigorous cycling bout into the daily schedule versus a controlled resting day on 24-h energy expenditure in a metabolic chamber. METHODS Ten male subjects (age = 22-33 yr) completed two separate 24-h chamber visits (one rest and one exercise day), and energy balance was maintained for each visit condition. On the exercise day, subjects completed 45 min of cycling at 57% Wmax (mean ± SD = 72.8% ± 5.8% VO(2)max) starting at 11:00 a.m. Activities of daily living were tightly controlled to ensure uniformity on both rest and exercise days. The area under the energy expenditure curve for exercise and rest days was calculated using the trapezoid rule in the EXPAND procedure in the SAS and then contrasted. RESULTS The 45-min exercise bout resulted in a net energy expenditure of 519 ± 60.9 kcal (P < 0.001). For 14 h after exercise, energy expenditure was increased 190 ± 71.4 kcal compared with the rest day (P < 0.001). CONCLUSIONS In young male subjects, vigorous exercise for 45 min resulted in a significant elevation in postexercise energy expenditure that persisted for 14 h. The 190 kcal expended after exercise above resting levels represented an additional 37% to the net energy expended during the 45-min cycling bout. The magnitude and duration of increased energy expenditure after a 45-min bout of vigorous exercise may have implications for weight loss and management.


PLOS ONE | 2012

Bananas as an Energy Source during Exercise: A Metabolomics Approach

David C. Nieman; Nicholas D. Gillitt; Dru A. Henson; Wei Sha; R. Andrew Shanely; Amy M. Knab; Lynn Cialdella-Kam; Fuxia Jin

This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N = 14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F2-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P = 0.258). F2-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P = 0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum) = 0.869, Q2(cum) = 0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways.

Collaboration


Dive into the R. Andrew Shanely's collaboration.

Top Co-Authors

Avatar

David C. Nieman

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Amy M. Knab

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Dru A. Henson

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary Pat Meaney

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Lynn Cialdella-Kam

Appalachian State University

View shared research outputs
Top Co-Authors

Avatar

Wei Sha

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beibei Luo

Shanghai University of Sport

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge