Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary R. Albert is active.

Publication


Featured researches published by Mary R. Albert.


Nature | 2015

Precise interpolar phasing of abrupt climate change during the last ice age

Christo Buizert; Betty M. Adrian; Jinho Ahn; Mary R. Albert; Richard B. Alley; Daniel Baggenstos; Thomas K. Bauska; R. Bay; Brian B. Bencivengo; Charles R. Bentley; Edward J. Brook; Nathan Chellman; Gary D. Clow; Jihong Cole-Dai; Howard Conway; Eric D. Cravens; Kurt M. Cuffey; Nelia W. Dunbar; Jon Edwards; John M. Fegyveresi; Dave G. Ferris; T. J. Fudge; Chris J. Gibson; Vasileios Gkinis; Joshua J. Goetz; Stephanie Gregory; Geoffrey M. Hargreaves; Nels Iverson; Jay A. Johnson; Tyler R. Jones

The last glacial period exhibited abrupt Dansgaard–Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard–Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard–Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard–Oeschger dynamics.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet

Kaitlin M. Keegan; Mary R. Albert; Joseph R. McConnell; Ian Baker

Significance Through an examination of shallow ice cores covering a wide area of the Greenland Ice Sheet (GIS), we show that the same mechanism drove two widespread melt events that occurred over 100 years apart, in 1889 and 2012. We found that black carbon from forest fires and rising temperatures combined to cause both of these events, and that continued climate change may result in nearly annual melting of the surface of the GIS by the year 2100. In addition, a positive feedback mechanism may be set in motion whereby melt water is retained as refrozen ice layers within the snow pack, causing lower albedo and leaving the ice sheet surface even more susceptible to future melting. In July 2012, over 97% of the Greenland Ice Sheet experienced surface melt, the first widespread melt during the era of satellite remote sensing. Analysis of six Greenland shallow firn cores from the dry snow region confirms that the most recent prior widespread melt occurred in 1889. A firn core from the center of the ice sheet demonstrated that exceptionally warm temperatures combined with black carbon sediments from Northern Hemisphere forest fires reduced albedo below a critical threshold in the dry snow region, and caused the melting events in both 1889 and 2012. We use these data to project the frequency of widespread melt into the year 2100. Since Arctic temperatures and the frequency of forest fires are both expected to rise with climate change, our results suggest that widespread melt events on the Greenland Ice Sheet may begin to occur almost annually by the end of century. These events are likely to alter the surface mass balance of the ice sheet, leaving the surface susceptible to further melting.


Journal of Geophysical Research | 1998

Physically based modeling of atmosphere‐to‐snow‐to‐firn transfer of H2O2 at South Pole

Joseph R. McConnell; Roger C. Bales; Richard W. Stewart; Anne M. Thompson; Mary R. Albert; Ricardo Ramos

Quantitative interpretation of ice core chemical records requires a detailed understanding of the transfer processes that relate atmospheric concentrations to those in the snow, firn, and ice. A unique, 2 year set of year-round surface snow samples at South Pole and snow pits, with associated accumulation histories, were used to test a physically based model for atmosphere-to-firn transfer of H2O2. The model, which extends our previous transfer modeling at South Pole into the snowpack, is based on the advection-dispersion equation and spherical diffusion within representative snow grains. Required physical characteristics of the snowpack, such as snow temperature and ventilation, were estimated independently using established physical models. The surface snow samples and related model simulations show that there is a repeatable annual cycle in H2O2 in the surface snow at South Pole. It peaks in early spring, and surface snow concentration is primarily determined by atmospheric concentration and temperature, with some dependence on grain size. The snow pits and associated model simulations point out the importance of accumulation timing and annual accumulation rate in understanding the deposition and preservation of H2O2 and δ18O at South Pole. Long-term snowpack simulations suggest that the firn continues to lose H2O2 to the atmosphere for at least 10–12 years (∼3 m) after burial at current South Pole temperatures and accumulation rates.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s.

Xavier Faïn; Christophe Ferrari; Aurélien Dommergue; Mary R. Albert; Mark Owen Battle; Jeffrey P. Severinghaus; Laurent Arnaud; Jean-Marc Barnola; Warren Cairns; Carlo Barbante; Claude F. Boutron

Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg°) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from ≈1.5 ng m−3 reaching a maximum of ≈3 ng m−3 around 1970 and decreased until stabilizing at ≈1.7 ng m−3 around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.


Annals of Glaciology | 2004

Extreme firn metamorphism: impact of decades of vapor transport on near-surface firn at a low-accumulation glazed site on the East Antarctic plateau

Mary R. Albert; Christopher A. Shuman; Zoe Courville; Robert Bauer; Mark Fahnestock; Theodore A. Scambos

Abstract Snow and firn properties control the transport of vapor, gases and water between the atmosphere and the underlying strata. An understanding of this transport and the properties that control it is important for predicting air–snow transfer of chemical species and for interpreting ice cores. Remote-sensing images of East Antarctica show large areas of alternating light and dark bands. These low-amplitude, long-wavelength features have glazed downwind faces and rough upwind faces and are called megadunes. The first linked measurements of the permeability and the associated microstructure for a glazed area within a well-defined megadune area are reported in this paper. Permeability and density were measured, along with grain-scale properties derived from digital image processing of preserved thick sections, at this cold, low-accumulation glazed site. A clear layering pattern exists. In the top meter the firn density ranges from 0.24 to 0.50 g cm–3. Permeability measurements range from 50 x 10–10 to 200 x 10–10μ2, several times greater than corresponding profiles from warmer, higher-accumulation sites like Siple Dome, Antarctica. It is shown that buoyancy-driven natural convection may be important in post-depositional processes in very cold, low-accumulation sites like this.


IEEE Transactions on Geoscience and Remote Sensing | 2008

WindSat Passive Microwave Polarimetric Signatures of the Greenland Ice Sheet

Li Li; Peter W. Gaiser; Mary R. Albert; David G. Long; Elizabeth M. Twarog

WindSat has systematically collected the first global fully polarimetric passive microwave data over both land and ocean. As the first spaceborne polarimetric microwave radiometer, it was designed to measure ocean surface wind speed and direction by including the third and fourth Stokes parameters, which are mostly related to the asymmetric structures of the ocean surface roughness. Although designed for wind vector retrieval, WindSat data are also collected over land and ice, and this new data has revealed, for the first time, significant land signals in the third and fourth Stokes parameter channels, particularly over Greenland and the Antarctic ice sheets. The third and fourth Stokes parameters show well-defined large azimuth modulations that appear to be correlated with geophysical variations, particularly snow structure, melting, and metamorphism, and have distinct seasonal variation. The polarimetric signatures are relatively weak in the summer and are strongest around spring. This corresponds well with the formation and erosion of the sastrugi in the dry snow zone and snowmelt in the soaked zone. In this paper, we present the full polarimetric signatures obtained from WindSat over Greenland, and use a simple empirical observation model to quantify the azimuthal variations of the signatures in space and time.


Journal of Geophysical Research | 2015

Observing and modeling the influence of layering on bubble trapping in polar firn

Logan E. Mitchell; Christo Buizert; Edward J. Brook; Daniel J. Breton; John M. Fegyveresi; Daniel Baggenstos; Anais J. Orsi; Jeffrey P. Severinghaus; Richard B. Alley; Mary R. Albert; Rachael H. Rhodes; Joseph R. McConnell; Michael Sigl; Olivia J. Maselli; Stephanie Gregory; Jinho Ahn

Interpretation of ice core trace gas records depends on an accurate understanding of the processes that smooth the atmospheric signal in the firn. Much work has been done to understand the processes affecting air transport in the open pores of the firn, but a paucity of data from air trapped in bubbles in the firn-ice transition region has limited the ability to constrain the effect of bubble closure processes. Here we present high-resolution measurements of firn density, methane concentrations, nitrogen isotopes, and total air content that show layering in the firn-ice transition region at the West Antarctic Ice Sheet (WAIS) Divide ice core site. Using the notion that bubble trapping is a stochastic process, we derive a new parameterization for closed porosity that incorporates the effects of layering in a steady state firn modeling approach. We include the process of bubble trapping into an open-porosity firn air transport model and obtain a good fit to the firn core data. We find that layering broadens the depth range over which bubbles are trapped, widens the modeled gas age distribution of air in closed bubbles, reduces the mean gas age of air in closed bubbles, and introduces stratigraphic irregularities in the gas age scale that have a peak-to-peak variability of ~10 years at WAIS Divide. For a more complete understanding of gas occlusion and its impact on ice core records, we suggest that this experiment be repeated at sites climatically different from WAIS Divide, for example, on the East Antarctic plateau.


Journal of Glaciology | 2009

The impact of accumulation rate on anisotropy and air permeability of polar firn at a high-accumulation site

Maria Hörhold; Mary R. Albert; Johannes Freitag

The first three-dimensional properties of polar firn obtained by X-ray microtomography are used to study the microstructure of snow on a 15 m deep firn core from West Antarctica. The snow is found to undergo coarsening down to approximately 2.5 m depth before grain growth and densification become the prevalent mechanisms of microstructure change. In contrast to previous assumptions, distinct anisotropy of the ice and pore geometry is observed throughout the profile, with a maximum at 2.5 m depth. The air permeability and the degree of anisotropy vary with depth and can be linked to short-term changes in accumulation rate via the residence time for which a certain snow layer stays in the uppermost 2.5 m. Patterns of the degree of anisotropy and air permeability of buried polar firn are relative indicators of past accumulation rates.


Journal of Geophysical Research | 2010

Lattice-Boltzmann modeling of the air permeability of polar firn

Zoe Courville; Maria Hörhold; Mark A. Hopkins; Mary R. Albert

Recent advances in three‐dimensional (3D) imaging of snow and firn combined with numerical modeling of flow through complex geometries have greatly improved the ability to predict permeability values based on microstructure. In this work, we combined 3D reconstructions of polar firn microstructure obtained from microcomputed tomography (mCT) and a 3D lattice‐Boltzmann (LB) model of air flow. We compared the modeled results to measurements of permeability for polar firn with a wide range of grain and pore‐scale characteristics. The results show good agreement between permeability measurements and calculated permeability values from the LB model over a wide range of sample types. The LB model is better at predicting measured permeability values than traditional empirical equations for polar firn.


Annals of Glaciology | 2004

Microstructure and permeability in the near-surface firn near a potential US deep-drilling site in West Antarctica

Ursula Rick; Mary R. Albert

Abstract The microstructure of snow and firn controls the transport of chemical species from the atmosphere into and out of the underlying firn. Permeability and thick-section microstructure measurements have been made from snow-pit and firn-core samples retrieved near the proposed deep-drilling site for the inland West Antarctic ice sheet. Measurements in past investigations of polar firn show that the permeability of the snow gradually increases with depth into the core to about 2 m, then decreases. In this core, there is a second maximum in permeability at approximately 12 m that is likely due to changes in meteorological conditions at the site. Either lower temperatures or higher accumulation rates in the most recent three to four decades could cause the changes in microstructure and permeability in this core. We suggest that climate shifts may alter gas records ultimately preserved in the ice because of the local climate’s effect on the permeability profile.

Collaboration


Dive into the Mary R. Albert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack E. Dibb

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Theodore A. Scambos

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoe Courville

Cold Regions Research and Engineering Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Anschütz

Norwegian Geotechnical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge