Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mary Sanders is active.

Publication


Featured researches published by Mary Sanders.


International Journal of Radiation Oncology Biology Physics | 2011

Verification of Calculated Skin Doses in Postmastectomy Helical Tomotherapy

Shima Ito; Brent C. Parker; Renee Levine; Mary Sanders; Jonas D. Fontenot; J Gibbons; Kenneth R. Hogstrom

PURPOSE To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). METHODS AND MATERIALS In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi·Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. RESULTS The mean difference and standard error of the mean difference between measurement and calculation for the scar measurements was -1.8% ± 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% ± 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% ± 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. CONCLUSIONS The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%.


Radiation Oncology | 2014

Evaluation of volumetric modulated arc therapy for postmastectomy treatment

Geoffrey P Nichols; Jonas D. Fontenot; J Gibbons; Mary Sanders

PurposeTo examine the feasibility of volumetric modulated arc therapy (VMAT) for post mastectomy radiotherapy (PMRT).Methods and materialsFifteen PMRT patients previously treated at our clinic with helical tomotherapy (HT) were identified for the study. Planning target volumes (PTV) included the chest wall and regional lymph nodes. A systematic approach to constructing VMAT that met the clinical goals was devised. VMAT plans were then constructed for each patient and compared with HT plans with which they had been treated. The resulting plans were compared on the basis of PTV coverage; dose homogeneity index (DHI) and conformity index (CI); dose to organs at risk (OAR); tumor control probability (TCP), normal tissue complication probability (NTCP) and secondary cancer complication probability (SCCP); and treatment delivery time. Differences were tested for significance using the paired Student’s t-test.ResultsBoth modalities produced clinically acceptable PMRT plans. VMAT plans showed better CI (p < 0.01) and better OAR sparing at low doses than HT plans, particularly at doses less than 5 Gy. On the other hand, HT plans showed better DHI (p < 0.01) and showed better OAR sparing at higher doses. Both modalities achieved nearly 100% tumor control probability and approximately 1% NTCP in the lungs and heart. VMAT showed lower SCCP than HT (p < 0.01), though both plans showed higher SCCP values than conventional mixed beam (electron-photon) plans reported by our group previously. VMAT plans required 66.2% less time to deliver than HT.ConclusionsBoth VMAT and HT provide acceptable treatment plans for PMRT. Both techniques are currently utilized at our institution.


Cancers | 2015

Predictive Risk of Radiation Induced Cerebral Necrosis in Pediatric Brain Cancer Patients after VMAT Versus Proton Therapy

Derek Freund; Rui Zhang; Mary Sanders; W Newhauser

Cancer of the brain and central nervous system (CNS) is the second most common of all pediatric cancers. Treatment of many of these cancers includes radiation therapy of which radiation induced cerebral necrosis (RICN) can be a severe and potentially devastating side effect. Risk factors for RICN include brain volume irradiated, the dose given per fraction and total dose. Thirteen pediatric patients were selected for this study to determine the difference in predicted risk of RICN when treating with volumetric modulated arc therapy (VMAT) compared to passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT). Plans were compared on the basis of dosimetric endpoints in the planned treatment volume (PTV) and brain and a radiobiological endpoint of RICN calculated using the Lyman-Kutcher-Burman probit model. Uncertainty tests were performed to determine if the predicted risk of necrosis was sensitive to positional errors, proton range errors and selection of risk models. Both PSPT and IMPT plans resulted in a significant increase in the maximum dose to the brain, a significant reduction in the total brain volume irradiated to low doses, and a significant lower predicted risk of necrosis compared with the VMAT plans. The findings of this study were upheld by the uncertainty analysis.


Journal of Proton Therapy | 2016

A Treatment Planning Comparison of Volumetric Modulated Arc Therapy and Proton Therapy for a Sample of Breast Cancer Patients Treated with Post-Mastectomy Radiotherapy

Margaret Hernandez; Rui Zhang; Mary Sanders; W Newhauser

Post-mastectomy radiotherapy (PMRT) has been shown to improve disease-free survival and overall survival for locally advanced breast cancer. However, long term survivors may develop life threatening acute and chronic treatment-related toxicities after radiotherapy, like cardiac toxicity and second cancers. The more advanced techniques like volumetric arc therapy (VMAT), and proton therapy have the potential to improve treatment outcome by constraining doses to radiosensitive organs, but evidence from outcome study will not be available until years or decades later. Furthermore, the literature is largely incomplete regarding systematic comparison of potential benefits of advanced technologies for PMRT. The purpose of this study was to compare proton therapy, both passively scattered (PSPT) and intensity modulated (IMPT), to VMAT and develop an evidence-based rationale for selecting a treatment modality for left sided post-mastectomy radiotherapy (PMRT) patients. Eight left-sided PMRT patients previously treated with VMAT were included in this study. Planning target volumes (PTV) included the chest wall and regional lymph nodes. PSPT and IMPT plans were created using a commercial proton treatment planning system. The resulting plans were compared to the corresponding VMAT on the basis of dosimetric and radiobiological endpoints. The uncertainties in risk from proton range, set-up errors, and dose-response models were also evaluated. All modalities produced clinically acceptable treatment plans with nearly 100% tumor control probability. Both proton techniques provided significantly lower normal tissue complication probability values for the heart (p < 0.02) and lung (p < 0.001). Patient-averaged second cancer risk for the contralateral breast and lungs were also significantly lower (p < 0.001) with protons compared to VMAT. The findings of this study were upheld by the uncertainty analysis. All three techniques provided acceptable PMRT treatment plans. Proton therapy showed significant advantages in terms of predicted normal tissue sparing compared to VMAT, taking into account possible uncertainties.


Medical Physics | 2018

Evaluation of a mixed beam therapy for postmastectomy breast cancer patients: Bolus electron conformal therapy combined with intensity modulated photon radiotherapy and volumetric modulated photon arc therapy

Rui Zhang; David Heins; Mary Sanders; Beibei Guo; Kenneth R. Hogstrom

Purpose The purpose of this study was to assess the potential benefits and limitations of a mixed beam therapy, which combined bolus electron conformal therapy (BECT) with intensity modulated photon radiotherapy (IMRT) and volumetric modulated photon arc therapy (VMAT), for left‐sided postmastectomy breast cancer patients. Methods Mixed beam treatment plans were produced for nine postmastectomy radiotherapy (PMRT) patients previously treated at our clinic with VMAT alone. The mixed beam plans consisted of 40 Gy to the chest wall area using BECT, 40 Gy to the supraclavicular area using parallel opposed IMRT, and 10 Gy to the total planning target volume (PTV) by optimizing VMAT on top of the BECT + IMRT dose distribution. The treatment plans were created in a commercial treatment planning system (TPS), and all plans were evaluated based on PTV coverage, dose homogeneity index (DHI), conformity index (CI), dose to organs at risk (OARs), normal tissue complication probability (NTCP), and secondary cancer complication probability (SCCP). The standard VMAT alone planning technique was used as the reference for comparison. Results Both techniques produced clinically acceptable PMRT plans but with a few significant differences: VMAT showed significantly better CI (0.70 vs 0.53, P < 0.001) and DHI (0.12 vs 0.20, P < 0.001) over mixed beam therapy. For normal tissues, mixed beam therapy showed better OAR sparing and significantly reduced NTCP for cardiac mortality (0.23% vs 0.80%, P = 0.01) and SCCP for contralateral breast (1.7% vs 3.1% based on linear model, and 1.2% vs 1.9% based on linear‐exponential model, P < 0.001 in both cases), but showed significantly higher mean (50.8 Gy vs 49.3 Gy, P < 0.001) and maximum skin doses (59.7 Gy vs 53.3 Gy, P < 0.001) compared with VMAT. Patients with more tissue (minimum distance between the distal PTV surface and lung approximately > 0.5 cm and volume of tissue between the distal PTV surface and heart or lung approximately > 250 cm3) between distal PTV surface and lung may benefit the most from mixed beam therapy. Conclusion This work has demonstrated that mixed beam therapy (BECT + IMRT:VMAT = 4:1) produces clinically acceptable plans having reduced OAR doses and risks of side effects compared with VMAT. Even though VMAT alone produces more homogenous and conformal dose distributions, mixed beam therapy remains as a viable option for treating postmastectomy patients, possibly leading to reduced normal tissue complications.


Physics in Medicine and Biology | 2017

Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

Jihyung Yoon; David Heins; Xiaodong Zhao; Mary Sanders; Rui Zhang

More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.


Medical Physics | 2016

SU‐F‐T‐87: Comparison of Advanced Radiotherapy Techniques for Post‐ Mastectomy Breast Cancer Patients

David Heins; Rui Zhang; Kenneth R. Hogstrom; Mary Sanders

PURPOSE To determine if bolus electron conformal therapy (Bolus-ECT) combined with intensity modulated x-ray therapy (IMXT) and flattening filter free volumetric modulated arc therapy (FFF-VMAT (6x and 10x)) can maintain equal or better dose coverage than standard volumetric modulated arc therapy (Std-VMAT) while reducing doses to organs at risk (OARs). METHODS Bolus-ECT with IMXT, FFF-VMAT, and Std-VMAT treatment plans were produced for ten post-mastectomy radiotherapy (PMRT) patients previously treated at our clinic. The treatment plans were created on commercially available treatment planning system (TPS) and all completed treatment plans were reviewed and approved by a radiation oncologist. The plans were evaluated based on planning target volume (PTV) coverage, tumor control probability (TCP), dose homogeneity index (DHI), conformity index (CI), and dose to organs at risk (OAR). RESULTS All techniques produced clinically acceptable PMRT plans. Overall, Bolus-ECT with IMXT exhibited higher maximum dose compared to all VMAT techniques. Bolus-ECT with IMXT and FFF-VMAT10x had slightly improved TCP over FFF-VMAT6x and Std-VMAT. However, all VMAT techniques showed improved CI and DHI over Bolus-ECT with IMXT. All techniques showed very similar mean lung dose. Bolus-ECT with IMXT exhibited a reduced mean heart dose over Std-VMAT. Both FFF-VMAT techniques had higher mean heart dose compared to Std-VMAT. In addition, Bolus-ECT with IMXT was able to reduce mean dose to the contralateral breast compared to Std-VMAT and both FFF-VMAT techniques had comparable but slightly reduced dose compared to Std-VMAT. CONCLUSION This work has shown that Bolus-ECT with IMXT produces clinically acceptable plans while reducing OAR doses. Both FFF-VMAT techniques are comparable to Std-VMAT with slight improvements. Even though all VMAT techniques produce more homogenous and conformal dose distributions, Bolus-ECT with IMXT is a viable option for treating post-mastectomy patients possibly leading to reduced risks of normal tissue complications.


Medical Physics | 2015

SU-E-T-628: Predicted Risk of Post-Irradiation Cerebral Necrosis in Pediatric Brain Cancer Patients: A Treatment Planning Comparison of Proton Vs. Photon Therapy

D Freund; Rui Zhang; W Newhauser; Mary Sanders

Purpose: Post-irradiation cerebral necrosis (PICN) is a severe late effect that can Result from brain cancers treatment using radiation therapy. The purpose of this study was to compare the treatment plans and predicted risk of PICN after volumetric modulated arc therapy (VMAT) to the risk after passively scattered proton therapy (PSPT) and intensity modulated proton therapy (IMPT) in a cohort of pediatric patients. Methods: Thirteen pediatric patients with varying age and sex were selected for this study. A clinical treatment volume (CTV) was constructed for 8 glioma patients and 5 ependymoma patients. Prescribed dose was 54 Gy over 30 fractions to the planning volume. Dosimetric endpoints were compared between VMAT and proton plans. The normal tissue complication probability (NTCP) following VMAT and proton therapy planning was also calculated using PICN as the biological endpoint. Sensitivity tests were performed to determine if predicted risk of PICN was sensitive to positional errors, proton range errors and selection of risk models. Results: Both PSPT and IMPT plans resulted in a significant increase in the maximum dose and reduction in the total brain volume irradiated to low doses compared with the VMAT plans. The average ratios of NTCP between PSPT and VMAT were 0.56 and 0.38 for glioma and ependymoma patients respectively and the average ratios of NTCP between IMPT and VMAT were 0.67 and 0.68 for glioma and ependymoma plans respectively. Sensitivity test revealed that predicted ratios of risk were insensitive to range and positional errors but varied with risk model selection. Conclusion: Both PSPT and IMPT plans resulted in a decrease in the predictive risk of necrosis for the pediatric plans studied in this work. Sensitivity analysis upheld the qualitative findings of the risk models used in this study, however more accurate models that take into account dose and volume are needed.


Medical Physics | 2011

SU‐E‐T‐486: Comparison of TLD Measured Dose and MVCT Reconstructed Dose for Post‐Mastectomy Chest Wall Irradiation with TomoTherapy

M Roberts; Brent C. Parker; J Gibbons; M Price; Mary Sanders; P Sprunger

Purpose: To determine the accuracy of TomoTherapys delivery verification planned adaptive (DVPA) dose reconstruction software in post‐ mastectomy radiation therapy (PMRT) calculations to the chest wall. Methods: Archived treatment data for 5 patients treated at MBPCC were restored to the DVPA analysis software. This data included daily pretreatment MVCT images as well as exit detector transit dosimetry data collected during treatment. These were used to calculate the delivery verification (DV) sinogram for each treatment fraction. The DV sinogram and MVCT image for each fraction were used to reconstruct the delivereddose for that fraction using a convolution/superposition algorithm. Point doses at four TLD locations were previously acquired for 15 treatment fractions for each patient. The DVPA and TLDdoses for each patient TLD for each fraction and compared to our clinically acceptable criterion of 5% agreement. Results: The mean difference for all the data was −3.2 ± 0.28% (4.7%). Approximately 66% of the data points agreed within 5%. The largest difference between measured and calculated doses was −17.3%. While the mean difference was within 5%, the large standard deviation of the data demonstrates the potential for large differences in agreement for individual fraction data. Conclusions: Patient motion after the MVCT can have a large effect on the calculation of radiological path‐length used by the database technique, especially near the surface. This uncertainty may be responsible for the differences seen in this work. Future evaluations of the DVPA software will include anthropomorphic phantom studies. Since the motion variable is removed in the treatment of the phantom it is expected that the dose reconstruction will compare well to TLDdoses.


International Journal of Radiation Oncology Biology Physics | 2010

Evaluation of a Balloon-based Vaginal Packing System for Brachytherapy of Cervical Carcinoma

Michael J. Price; Jonas D. Fontenot; Mary Sanders; S. Johnson; C. Wood

Collaboration


Dive into the Mary Sanders's collaboration.

Top Co-Authors

Avatar

Rui Zhang

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

W Newhauser

Mary Bird Perkins Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David Heins

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

J Gibbons

Mary Bird Perkins Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jonas D. Fontenot

Mary Bird Perkins Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth R. Hogstrom

Mary Bird Perkins Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Brent C. Parker

Mary Bird Perkins Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Beibei Guo

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

C. Wood

Mary Bird Perkins Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge