Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marzia Del Re is active.

Publication


Featured researches published by Marzia Del Re.


European Urology | 2017

The Detection of Androgen Receptor Splice Variant 7 in Plasma-derived Exosomal RNA Strongly Predicts Resistance to Hormonal Therapy in Metastatic Prostate Cancer Patients.

Marzia Del Re; Elisa Biasco; Stefania Crucitta; Lisa Derosa; Eleonora Rofi; Cinzia Orlandini; Mario Miccoli; Luca Galli; Alfredo Falcone; Guido Jenster; Ron H.N. van Schaik; Romano Danesi

BACKGROUND The androgen receptor splice variant 7 (AR-V7) is associated with resistance to hormonal therapy in castration-resistant prostate cancer (CRPC). Due to limitations of the methods available for AR-V7 analysis, the identification of a reliable detection method may facilitate the use of this biomarker in clinical practice. OBJECTIVE To confirm AR-V7 as a predictor of resistance to hormonal therapy and develop a new approach to assess AR-V7 by highly sensitive digital droplet polymerase chain reaction (ddPCR) in plasma-derived exosomal RNA. DESIGN, SETTING, AND PARTICIPANTS Plasma samples were collected from 36 CRPC patients before they began second-line hormonal treatment. Exosomes were isolated and RNA extracted for analysis of AR-V7 by ddPCR. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The absolute target gene concentration as copies per milliliter (copies/ml) was determined by ddPCR. Statistical analyses were performed with SPSS software (IBM Corp., Armonk, NY, USA). RESULTS AND LIMITATIONS A total of 26 patients received abiraterone and 10 enzalutamide; 39% of patients were found to be AR-V7 positive (AR-V7+). Median progression-free survival was significantly longer in AR-V7 negative (AR-V7-) versus AR-V7+ patients (20 vs 3 mo; p<0.001). Overall survival was significantly shorter in AR-V7+ participants at baseline compared with AR-V7- participants (8 mo vs not reached; p<0.001). CONCLUSIONS This study demonstrates that plasma-derived exosomal RNA is a reliable source of AR-V7 that can be detected sensitively by ddPCR assay. We also showed that resistance to hormonal therapy may be predicted by AR-V7, making it a clinically relevant biomarker. PATIENT SUMMARY We report a first study on a method for androgen receptor splice variant 7 (AR-V7) detection in RNA extracted from cancer cell vesicles released in blood. Results confirmed the role of AR-V7 as a predictive biomarker of resistance to hormonal therapy. Our assay showed that vesicles are a reliable source of AR-V7 RNA and that the method is fast, highly sensitive, and affordable.


Pharmacogenomics | 2013

DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis

Salvatore Terrazzino; Sarah Cargnin; Marzia Del Re; Romano Danesi; Pier Luigi Canonico; Armando A. Genazzani

AIM In the present study we conducted a systematic review and meta-analysis of published data to quantify the impact of the DPYD IVS14+1G>A and 2846A>T variants on the risk of fluoropyrimidine-related toxicities and to determine sensitivity and specificity testing for DPYD variants. METHODS Relevant studies were identified through PubMed and Web of Knowledge databases, studies included were those published up until to May 2012. Study quality was assessed according to the HuGENET guidelines and Strengthening the Reporting of Genetic Association (STREGA) recommendations. RESULTS Random-effects meta-analysis provided evidence that carriers of DPYD IVS14+1G>A are at higher risk of ≥3 degrees of overall grade toxicity, hematological toxicity, mucositis and diarrhea. In addition, a strong association was also found between carriers of the DPYD 2846T allele and overall grade ≥3 toxicity or grade ≥3 diarrhea. An inverse linear relationship was found in prospective studies between the odds ratio of DPYD IVS14+1G>A and the incidence of overall grade ≥3 toxicity, indicating an higher impact in cohorts in which the incidence of severe toxicity was lower. CONCLUSION The results of this meta-analysis confirm clinical validity of DPYD IVS14+1G>A and 2846A>T as risk factors for the development of severe toxicities following fluoropyrimidine treatment. Furthermore, the sensitivity and specificity estimates obtained could be useful in establishing the cost-effectiveness of testing for DPYD variants.


Current Drug Metabolism | 2011

Pharmacokinetic and Pharmacogenetic Predictive Markers of Irinotecan Activity and Toxicity

Antonello Di Paolo; Guido Bocci; Marialuisa Polillo; Marzia Del Re; Teresa Di Desidero; Marianna Lastella; Romano Danesi

After the rapid development of new classes of antineoplastic drugs, research activities have focused their efforts to the identification of predictive markers of drug activity and tolerability. Irinotecan (CPT-11) may induce severe toxicities (diarrhea, neutropenia) that limit its clinical use, but the increasing knowledge of its pharmacokinetics offered a potential approach to treatment optimization. Pharmacokinetics, the first area of investigation, has identified markers such as biliary index, the relative extent of conversion and the glucuronidation ratio, which are capable to define the risk for severe adverse effects. Because of the existence of some issues concerning the adoption of pharmacokinetic strategies to optimize CPT-11 dose and schedule, analyses of genetic polymorphisms seemed to offer a more reliable and safer approach for the identification of patients at risk than pharmacokinetics. In this view, the uridine diphosphate glucuronosil transferase isoform 1A1 (UGT1A1) was associated with significant changes in disposition of CPT-11 and its metabolites, and consequently with treatment-induced toxicities. However, the complex pharmacokinetics of irinotecan and the involvement of several enzymes other than UGT (i.e., carboxyl estherases, CYP450 isoforms), and transmembrane transporters (ABCB1, ABCC1, ABCG2, SLCO1B1) make difficult the identification of patients with an optimal sensitivity and specificity, and a large part of variability among patients still remains unexplained. Furthermore, prospective clinical studies that should demonstrate the reliability of those pharmacokinetic and pharmacogenetic markers are still lacking. In the present review, pharmacokinetic and pharmacogenetic markers will be discussed.


Translational lung cancer research | 2015

Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer.

Paola Bordi; Marzia Del Re; Romano Danesi; Marcello Tiseo

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are current treatments for advanced non-small cell lung cancer (NSCLC) harboring activating EGFR gene mutations. Histological or cytological samples are the standard tumor materials for EGFR mutation analysis. However, the accessibility of tumor samples is not always possible and satisfactory in advanced NSCLC patients. Moreover, totality of EGFR mutated NSCLC patients will develop resistance to EGFR-TKIs. Repeat biopsies to study genetic evolution as a result of therapy are difficult, invasive and may be confounded by intra-tumor heterogeneity. Thus, exploring accurate and less invasive techniques to (I) diagnosis EGFR mutation if tissue is not available or not appropriate for molecular analysis and to (II) monitor EGFR-TKI treatment are needed. Circulating DNA fragments carrying tumor specific sequence alterations [circulating cell-free tumor DNA (cftDNA)] are found in the cell-free fraction of blood, representing a variable and generally small fraction of the total circulating DNA. cftDNA has a high degree of specificity to detect EGFR gene mutations in NSCLC. Studies have shown the feasibility of using cftDNA to diagnosis of EGFR activating gene mutations and also to monitor tumor dynamics in NSCLC patients treated with EGFR-TKIs. These evidences suggested that non-invasive techniques based on blood samples had a great potential in EGFR mutated NSCLC patients. In this review, we summarized these non-invasive approaches and relative scientific data now available, considering their possible applications in clinical practice of NSCLC treatment.


Biochimica et Biophysica Acta | 2014

Genetic variation: effect on prostate cancer ☆

Tristan M. Sissung; Douglas K. Price; Marzia Del Re; Ariel M. Ley; Elisa Giovannetti; William D. Figg; Romano Danesi

The crucial role of androgens in the development of prostate cancer is well established. The aim of this review is to examine the role of constitutional (germline) and tumor-specific (somatic) polymorphisms within important regulatory genes of prostate cancer. These include genes encoding enzymes of the androgen biosynthetic pathway, the androgen receptor gene, genes that encode proteins of the signal transduction pathways that may have a role in disease progression and survival, and genes involved in prostate cancer angiogenesis. Characterization of deregulated pathways critical to cancer cell growth have lead to the development of new treatments, including the CYP17 inhibitor abiraterone and clinical trials using novel drugs that are ongoing or recently completed [1]. The pharmacogenetics of the drugs used to treat prostate cancer will also be addressed. This review will define how germline polymorphisms are known affect a multitude of pathways, and therefore phenotypes, in prostate cancer etiology, progression, and treatment.


Oncotarget | 2017

Contribution of KRAS mutations and c.2369C > T (p.T790M) EGFR to acquired resistance to EGFR-TKIs in EGFR mutant NSCLC: a study on circulating tumor DNA.

Marzia Del Re; Marcello Tiseo; Paola Bordi; Armida D’Incecco; Andrea Camerini; Iacopo Petrini; Maurizio Lucchesi; Alessandro Inno; Daniele Spada; Enrico Vasile; Valentina Citi; Giorgio Malpeli; Enrica Testa; Stefania Gori; Alfredo Falcone; Domenico Amoroso; Antonio Chella; Federico Cappuzzo; Andrea Ardizzoni; Aldo Scarpa; Romano Danesi

Introduction KRAS oncogene mutations (MUTKRAS) drive resistance to EGFR inhibition by providing alternative signaling as demonstrated in colo-rectal cancer. In non-small cell lung cancer (NSCLC), the efficacy of treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) depends on activating EGFR mutations (MUTEGFR). However, inhibition of EGFR may select resistant cells displaying alternative signaling, i.e., KRAS, or restoration of EGFR activity due to additional MUTEGFR, i.e., the c.2369C > T (p.T790MEGFR). Aim The aim of this study was to investigate the appearance of MUTKRAS during EGFR-TKI treatment and their contribution to drug resistance. Methods This study used cell-free circulating tumor DNA (cftDNA) to evaluate the appearance of codon 12 MUTKRAS and p.T790MEGFR mutations in 33 advanced NSCLC patients progressing after an EGFR-TKI. Results p.T790MEGFR was detected in 11 (33.3%) patients, MUTKRAS at codon 12 in 3 (9.1%) while both p.T790MEGFR and MUTKRAS codon 12 were found in 13 (39.4%) patients. Six patients (18.2%) were KRAS wild-type (WTKRAS) and negative for p.T790MEGFR. In 8 subjects paired tumor re-biopsy/plasma samples were available; the percent concordance of tissue/plasma was 62.5% for p.T790MEGFR and 37.5% for MUTKRAS. The analysis of time to progression (TTP) and overall survival (OS) in WTKRAS vs. MUTKRAS were not statistically different, even if there was a better survival with WTKRAS vs. MUTKRAS, i.e., TTP 14.4 vs. 11.4 months (p = 0.97) and OS 40.2 vs. 35.0 months (p = 0.56), respectively. Conclusions MUTKRAS could be an additional mechanism of escape from EGFR-TKI inhibition and cftDNA is a feasible approach to monitor the molecular development of drug resistance.


Cancer Treatment Reviews | 2012

Pharmacogenetics of anti-estrogen treatment of breast cancer

Marzia Del Re; Angela Michelucci; Paolo Simi; Romano Danesi

A major effort is underway to select genetic polymorphisms potentially relevant to the clinical efficacy and safety of endocrine treatment of breast cancer. Genetic factors of the host that affect the metabolism of tamoxifen, a widely used drug for the adjuvant treatment of breast cancer, have received particular attention. Cytochrome P450 isoform 2D6 (CYP2D6) is a key step in the metabolism of tamoxifen to its active moiety endoxifen. Women with functionally deficient genetic variants of CYP2D6 who are given drugs that inhibit CYP2D6 are exposed to low endoxifen plasma levels and may enjoy reduced benefits from tamoxifen treatment. Therefore, CYP2D6 status may be an important predictor of the benefits of tamoxifen to an individual; unfortunately, the data are not uniformly concordant, and definitive evidence that would suggest the routine analysis of CYP2D6 before commencing tamoxifen treatment is not yet available. Recent research has focused on the role UDP-glucuronosyltransferases, a family of metabolizing enzymes that play an important role in the metabolic clearance of tamoxifen and of the aromatase inhibitors as well, and how interindividual differences in these enzymes may play a role in the clinical outcome upon administration of anti-estrogen treatment. In conclusion, whether a pharmacogenetic profile should be obtained prior to initiating tamoxifen therapy is currently a matter of debate, although summing up all the scientific evidence available on this issue it appears that the genetic screening would be an useful support for clinical decision making in selected patients.


Critical Reviews in Oncology Hematology | 2015

Angiogenic inhibitors in gastric cancers and gastroesophageal junction carcinomas: A critical insight

Giuseppe Aprile; Elena Ongaro; Marzia Del Re; Stefania Eufemia Lutrino; Marta Bonotto; Laura Ferrari; K. Rihawi; Giovanni Gerardo Cardellino; Nicoletta Pella; Romano Danesi; Gianpiero Fasola

Advanced gastric cancer ranks second as the global leading cause of cancer-related death and improvements in systemic chemotherapy have reached a plateau. Advanced molecular sequencing techniques help identifying patients more likely to respond to targeted agents; nevertheless we are still far from major breakthroughs. Although antiangiogenic drugs have produced notable advances, redundant pathways or mechanisms of resistance may limit their efficacy. Novel compounds have been recently developed to specifically target VEGF receptors, PlGF, FGF, MET, and angiopoietin. Ramucirumab, a monoclonal antibody specifically directed against the VEGFR-2, has emerged as a novel therapeutic opportunity. REGARD and RAINBOW were the first phase III studies to report the value of this strategy in gastric cancer patients, and other ongoing trials are testing novel antiangiogenic compounds. The aim of our review is to present the state-of-the-art of novel antiangiogenic compounds in advanced gastric cancer, underlying the biology, their mechanism of action, and their clinical results.


Expert Opinion on Investigational Drugs | 2015

Investigational therapies targeting signal transducer and activator of transcription 3 for the treatment of cancer

Matteo Santoni; Francesco Massari; Marzia Del Re; Chiara Ciccarese; Francesco Piva; Giovanni Principato; Rodolfo Montironi; Daniele Santini; Romano Danesi; Giampaolo Tortora; Stefano Cascinu

Introduction: Signal transducer and activator of transcription 3 (STAT3) mediates the expression of a variety of genes in response to cell stimuli and thus plays a key role in several cellular processes such as cell growth and apoptosis. Deregulation of the STAT3 activity has been shown in many malignancies, including breast, head and neck, prostate, pancreas, ovarian and brain cancers and melanoma. Thus, STAT3 may represent an ideal target for cancer therapy. Areas covered: The authors review recent data on the role of STAT3 in tumor initiation and progression, as well as the ongoing clinical trials in cancer patients. The content includes information derived from trial databases, regulatory authorities and scientific literature. Expert opinion: Targeting STAT3 activation leads to the inhibition of tumor growth and metastasis both in vitro and in vivo without affecting normal cells; this suggests that STAT3 could be a valid molecular target for cancer therapy. Extensive clinical research is trying to find anti-STAT3 agents with high single-agent activity. The identification and development of novel drugs that can target deregulated STAT3 activation effectively is both a scientific and clinical challenge that needs to be addressed in the near future.


Pharmacological Research | 2016

Pathophysiology and pharmacological targets of VEGF in diabetic macular edema.

Stefano Fogli; Selene Mogavero; Colin Gerard Egan; Marzia Del Re; Romano Danesi

Diabetic macular edema (DME) is a serious condition that can cause blindness in diabetic patients suffering from diabetic retinopathy (DR). Although vascular endothelial growth factor (VEGF) is known to play a role in the development of DME, the pathological processes leading to the onset of this disease are highly complex and the exact sequence in which they occur is still not completely understood. Angiogenesis and inflammation have been shown to be involved in the pathogenesis of this disease. However, it still remains to be clarified whether angiogenesis following VEGF over-expression is a cause or a consequence of inflammation. Here, we provide an overview of the current data available in the literature focusing on VEGF, angiogenesis, inflammation, DR and DME. Our analysis suggests that angiogenesis and inflammation act interdependently during the development of DME. VEGF is a critical player in the molecular crosstalk occurring between these two processes, reinforcing the use of anti-VEGF agents for the treatment of DME.

Collaboration


Dive into the Marzia Del Re's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge