Masa-aki Ohto
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masa-aki Ohto.
Sexual Plant Reproduction | 2009
Masa-aki Ohto; Sandra K. Floyd; Robert L. Fischer; Robert B. Goldberg; John J. Harada
Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size.
Plant Physiology | 1994
Shin Takeda; Shoji Mano; Masa-aki Ohto; Kenzo Nakamura
Genes coding for two major proteins of the tuberous root of sweet potato (Ipomoea batatas), namely, sporamin and [beta]-amylase, are inducible in leaves and petioles when they are supplied with high concentrations of sucrose or other metabolizable sugars, such as glucose and fructose, and the accumulation of a large amount of starch accompanies this induction. Three inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), namely, okadaic acid, microcystin-LR, and calyculin A, strongly inhibited the sucrose-inducible accumulation of mRNAs for sporamin, [beta]-amylase, and the small subunit of ADP-glucose pyrophosphorylase in petioles. However, these inhibitors did not have any major effect on the steady-state levels of mRNAs for catalase and glyceraldehyde-3-phosphate dehydrogenase, and the sucrose-inducible increase in the level of sucrose synthase mRNA was enhanced by okadaic acid. Inhibitors of PP1 and PP2A also inhibited sucrose-inducible expression of a fusion gene, consisting of the promoter of the sweet potato gene for [beta]-amylase and the coding sequence for [beta]-glucuronidase (GUS), in leaves of transgenic tobacco (Nicotiana tabacum). The inhibition was not due to inhibition of uptake and cleavage of sucrose, since okadaic acid also inhibited induction of the fusion gene by glucose or fructose. Addition of okadaic acid to leaves that had been treated with sucrose for 6 h inhibited further increases in GUS activity. These results suggest that the continuous dephosphorylation of proteins is required in the transduction of carbohydrate metabolic signals to the transcriptional activation of at least some sugar-inducible genes in plant.
Plant Physiology | 1995
Masa-aki Ohto; Kenzo Nakamura
The sugar-inducible expression of genes for sporamin and [beta]-amylase in leaf explants of sweet potato (Ipomoea batatas) and that of a [beta]-glucuronidase-fusion gene, with the promoter of the gene for [beta]-amylase in leaves of tobacco (Nicotiana tabacum), requires Ca2+ signaling (M. Ohto, K. Hayashi, M. Isobe, K. Nakamura [1995] Plant J 7: 297–307), and it was inhibited by staurosporin and K252a, inhibitors of protein kinases. Autophosphorylation activities of several potential protein kinases in leaves of tobacco were significantly higher in younger leaves than in mature leaves. However, the autophosphorylation activities of these proteins in mature leaves, especially those of the major autophosphorylatable proteins with apparent molecular masses of 56 and 54 kD, increased upon treatment of leaf discs with a 0.3 M solution of sucrose, glucose, or fructose, did not increase with sorbitol or mannitol treatments, and the increase by sucrose was inhibited by cycloheximide. Autophosphorylation of the 56- and 54-kD protein in vitro was dependent on Ca2+ and inhibited by staurosporine, K-252a, and by W-7. These results suggest that they belong to the family of calcium-dependent protein kinases. They were concentrated in the plasma membrane fraction and were released from membrane vesicles by high salt or with sodium carbonate. The possible functions of these sugar-inducible calcium-dependent protein kinases associated with the plasma membrane are discussed.
Plant Physiology | 2011
Hans E. Holtan; Simona Bandong; Colleen M. Marion; Luc Adam; Shiv B. Tiwari; Yu Shen; Julin N. Maloof; Don R. Maszle; Masa-aki Ohto; Sasha Preuss; Rob Meister; Marie E. Petracek; Peter P. Repetti; T. Lynne Reuber; Oliver J. Ratcliffe; Rajnish Khanna
A B-box zinc finger protein, B-BOX32 (BBX32), was identified as playing a role in determining hypocotyl length during a large-scale functional genomics study in Arabidopsis (Arabidopsis thaliana). Further analysis revealed that seedlings overexpressing BBX32 display elongated hypocotyls in red, far-red, and blue light, along with reduced cotyledon expansion in red light. Through comparative analysis of mutant and overexpression line phenotypes, including global expression profiling and growth curve studies, we demonstrate that BBX32 acts antagonistically to ELONGATED HYPOCOTYL5 (HY5). We further show that BBX32 interacts with SALT TOLERANCE HOMOLOG2/BBX21, another B-box protein previously shown to interact with HY5. Based on these data, we propose that BBX32 functions downstream of multiple photoreceptors as a modulator of light responses. As such, BBX32 potentially has a native role in mediating gene repression to maintain dark adaptation.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Masa-aki Ohto; Robert L. Fischer; Robert B. Goldberg; Kenzo Nakamura; John J. Harada
Plant Physiology | 2001
Masa-aki Ohto; Kiyoshi Onai; Yasuko Furukawa; Etsuko Aoki; Takashi Araki; Kenzo Nakamura
Plant Physiology | 1991
Kenzo Nakamura; Masa-aki Ohto; Nobumasa Yoshida; Kyoko Nakamura
Plant Physiology | 1992
Masa-aki Ohto; Kyoko Nakamura-Kito; Kenzo Nakamura
Archive | 1998
John J. Harada; Tamar Lotan; Masa-aki Ohto; Robert B. Goldberg; Robert L. Fischer
Archive | 1998
John J. Harada; Tamar Lotan; Masa-aki Ohto; Robert B. Goldberg; Robert L. Fischer