Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where nan Masaaki is active.

Publication


Featured researches published by nan Masaaki.


Journal of Clinical Investigation | 2005

Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages

Kazuichi Maruyama; Masaaki; Claus Cursiefen; David G. Jackson; Hiroshi Keino; Minoru Tomita; Nico van Rooijen; Hideya Takenaka; Patricia A. D’Amore; Joan Stein-Streilein; Douglas W. Losordo; J. Wayne Streilein

In the inflamed cornea, there is a parallel outgrowth of blood and lymphatic vessels into the normally avascular cornea. We tested whether adaptive and/or innate immune cells were actively involved in the genesis of new lymphatic vessels. Our results indicate that innate immune cells (CD11b+ macrophages, but not CD11c+ dendritic cells) physically contributed to lymphangiogenesis under pathological conditions and that bone marrow-derived CD11b+ macrophages expressed lymphatic endothelial markers such as LYVE-1 and Prox-1 under inflamed conditions in the corneal stromata of mice. Furthermore, blood vascular endothelial cells that expressed the Tie2 promoter did not contribute to newly formed lymphatic vessels under inflamed conditions. Our in vitro experiments demonstrated that CD11b+ macrophages alone were capable of forming tube-like structures that expressed markers of lymphatic endothelium such as LYVE-1 and podoplanin. The novel finding that CD11b+ macrophages are critical for the development of inflammation-dependent lymphangiogenesis in the eye suggests a new mechanism of lymphangiogenesis.


Journal of Experimental Medicine | 2007

Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart

Hyun-Jai Cho; Namho Lee; Ji Yoon Lee; Yong Jin Choi; Masaaki; Andrea Wecker; Jin-Ok Jeong; Cynthia Curry; Gangian Qin; Young-sup Yoon

Noncellular differentiation effects have emerged as important mechanisms mediating therapeutic effects of stem or progenitor cell transplantation. Here, we investigated the expression patterns and sources of humoral factors and their regional and systemic biological effects after bone marrow (BM)-derived endothelial progenitor cell (EPC) transplantation into ischemic myocardium. Although most of the transplanted EPCs disappeared within a week, up-regulation of multiple humoral factors was sustained for longer than two weeks, which correlated well with the recovery of cardiac function. To determine the source of the humoral factors, we injected human EPCs into immunodeficient mice. Whereas the expression of human EPC (donor)-derived cytokines rapidly decreased to a nondetectable level within a week, up-regulation of mouse (recipient)-derived cytokines, including factors that could mobilize BM cells, was sustained. Histologically, we observed higher capillary density, a higher proliferation of myocardial cells, a lower cardiomyocyte apoptosis, and reduced infarct size. Furthermore, after EPC transplantation, BM-derived stem or progenitor cells were increased in the peripheral circulation and incorporated into the site of neovascularization and myocardial repair. These data indicate that myocardial EPC transplantation induces humoral effects, which are sustained by host tissues and play a crucial role in repairing myocardial injury.


Nature Medicine | 2005

Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling

Kengo Kusano; Roberto Pola; Toshinori Murayama; Cynthia Curry; Atsuhiko Kawamoto; Atsushi Iwakura; Satoshi Shintani; Masaaki; Jun Asai; Tengiz Tkebuchava; Tina Thorne; Hideya Takenaka; Ryuichi Aikawa; David A. Goukassian; Patrick von Samson; Hiromichi Hamada; Young-sup Yoon; Marcy Silver; Elizabeth Eaton; Hong Ma; Lindsay Heyd; Marianne Kearney; William Munger; Jeffery A Porter; Raj Kishore; Douglas W. Losordo

Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow–derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.


Circulation | 2005

Endothelial Progenitor Cells Are Rapidly Recruited to Myocardium and Mediate Protective Effect of Ischemic Preconditioning via “Imported” Nitric Oxide Synthase Activity

Masaaki; Hiromi Nishimura; Atsushi Iwakura; Andrea Wecker; Elizabeth Eaton; Takayuki Asahara; Douglas W. Losordo

Background—The function of bone marrow–derived endothelial progenitor cells (EPCs) in repair of ischemic tissue has been the subject of intense scrutiny, and the capacity of these cells to contribute significantly to new blood vessels remains controversial. The possibility that EPCs could act as reservoirs of cytokines has been implied by several observations; however, a specific role for cytokine delivery has not been identified. Methods and Results—We performed a series of experiments that revealed the rapid recruitment of EPCs to the myocardium by very short periods of ischemia, so-called ischemic preconditioning. The recruited EPCs express an array of potentially cardioprotective cytokines including nitric oxide synthase isoforms. Bone marrow transplantation studies, using donor marrow null for nitric oxide synthase isoforms, revealed that both endothelial and inducible nitric oxide synthase derived from bone marrow cells play essential roles in the cardioprotective effect that normally occurs after ischemic preconditioning. Conclusions—These findings provide novel insights about the role of bone marrow–derived cells in ischemic preconditioning and also reveal that distinct mechanisms regulate recovery after ischemia-reperfusion and chronic ischemic injury.


Circulation | 2006

Topical Sonic Hedgehog Gene Therapy Accelerates Wound Healing in Diabetes by Enhancing Endothelial Progenitor Cell–Mediated Microvascular Remodeling

Jun Asai; Hideya Takenaka; Kengo Kusano; Masaaki; Corinne Luedemann; Cynthia Curry; Elizabeth Eaton; Atsushi Iwakura; Yoshiaki Tsutsumi; Hiromichi Hamada; Saburo Kishimoto; Tina Thorne; Raj Kishore; Douglas W. Losordo

Background— Sonic hedgehog (Shh) is a prototypical morphogen known to regulate epithelial-mesenchymal interaction during embryonic development. Recent observations indicate that exogenous administration of Shh can induce angiogenesis and may accelerate repair of ischemic myocardium and skeletal muscle. Because angiogenesis plays a pivotal role in wound repair, we hypothesized that activation of the hedgehog pathway may promote a favorable effect on microvascular remodeling during cutaneous wound healing and thereby accelerate wound closure. Because diabetes is associated with impaired wound healing, we tested this hypothesis in a diabetic model of cutaneous wound repair. Methods and Results— In Ptc1-LacZ mice, cutaneous injury resulted in LacZ expression, indicating that expression of the Shh receptor Patched was induced and therefore that the Shh signaling pathway was intact postnatally and upregulated in the process of wound repair. In diabetic mice, topical gene therapy with the use of naked DNA encoding for Shh resulted in significant local gene expression and acceleration of wound recovery. The acceleration in wound healing was notable for increased wound vascularity. In bone marrow transplantation models, the enhanced vascularity of the wound was shown to be mediated, at least in part, by enhanced recruitment of bone marrow–derived endothelial progenitor cells. In vitro, Shh promoted production of angiogenic cytokines from fibroblasts as well as proliferation of dermal fibroblasts. Furthermore, Shh directly promoted endothelial progenitor cell proliferation, migration, adhesion, and tube formation. Conclusions— These findings suggest that a simple strategy of topically applied Shh gene therapy may have significant therapeutic potential for enhanced wound healing in patients with impaired microcirculation such as occurs in diabetes. (Circulation. 2006;113:2413-2424.)


Circulation Research | 2007

Critical Role of Endothelial Notch1 Signaling in Postnatal Angiogenesis

Kyosuke Takeshita; Minoru Satoh; Masaaki; Marcy Silver; Florian P. Limbourg; Yasushi Mukai; Yoshiyuki Rikitake; Freddy Radtke; Thomas Gridley; Douglas W. Losordo; James K. Liao

Notch receptors are important mediators of cell fate during embryogenesis, but their role in adult physiology, particularly in postnatal angiogenesis, remains unknown. Of the Notch receptors, only Notch1 and Notch4 are expressed in vascular endothelial cells. Here we show that blood flow recovery and postnatal neovascularization in response to hindlimb ischemia in haploinsufficient global or endothelial-specific Notch1+/− mice, but not Notch4−/− mice, were impaired compared with wild-type mice. The expression of vascular endothelial growth factor (VEGF) in response to ischemia was comparable between wild-type and Notch mutant mice, suggesting that Notch1 is downstream of VEGF signaling. Treatment of endothelial cells with VEGF increases presenilin proteolytic processing, &ggr;-secretase activity, Notch1 cleavage, and Hes-1 (hairy enhancer of split homolog-1) expression, all of which were blocked by treating endothelial cells with inhibitors of phosphatidylinositol 3-kinase/protein kinase Akt or infecting endothelial cells with a dominant-negative Akt mutant. Indeed, inhibition of &ggr;-secretase activity leads to decreased angiogenesis and inhibits VEGF-induced endothelial cell proliferation, migration, and survival. Overexpression of the active Notch1 intercellular domain rescued the inhibitory effects of &ggr;-secretase inhibitors on VEGF-induced angiogenesis. These findings indicate that the phosphatidylinositol 3-kinase/Akt pathway mediates &ggr;-secretase and Notch1 activation by VEGF and that Notch1 is critical for VEGF-induced postnatal angiogenesis. These results suggest that Notch1 may be a novel therapeutic target for improving angiogenic response and blood flow recovery in ischemic limbs.


Circulation Research | 2006

Endothelial Progenitor Thrombospondin-1 Mediates Diabetes-Induced Delay in Reendothelialization Following Arterial Injury

Masaaki; Hideya Takenaka; Jun Asai; Kayoko Ibusuki; Yusuke Mizukami; Kazuichi Maruyama; Young-sup Yoon; Andrea Wecker; Corinne Luedemann; Elizabeth Eaton; Marcy Silver; Tina Thorne; Douglas W. Losordo

Delayed reendothelialization contributes to restenosis after angioplasty and stenting in diabetes. Prior data have shown that bone marrow (BM)-derived endothelial progenitor cells (EPCs) contribute to endothelial recovery after arterial injury. We investigated the hypothesis that the EPC contribution to reendothelialization may be impaired in diabetes, resulting in delayed reendothelialization. Reendothelialization was significantly reduced in diabetic mice compared with nondiabetic mice in a wire-induced carotid denudation model. The EPC contribution to neoendothelium was significantly reduced in Tie2/LacZ BM-transplanted diabetic versus nondiabetic mice. BM from diabetic and nondiabetic mice was transplanted into nondiabetic mice, revealing that reendothelialization was impaired in the recipients of diabetic BM. To examine the relative roles of denuded artery versus EPCs in diabetes, we injected diabetic and nondiabetic EPCs intravenously after arterial injury in diabetic and nondiabetic mice. Diabetic EPCs recruitment to the neoendothelium was significantly reduced, regardless of the diabetic status of the recipient mice. In vitro, diabetic EPCs exhibited decreased migration and adhesion activities. Vascular endothelial growth factor and endothelial NO synthase expressions were also significantly reduced in diabetic EPCs. Notably, thrombospondin-1 mRNA expression was significantly upregulated in diabetic EPCs, associating with the decreased EPC adhesion activity in vitro and in vivo. Reendothelialization is impaired by malfunctioning EPCs in diabetes. Diabetic EPCs have phenotypic differences involving thrombospondin-1 expression compared with nondiabetic EPCs, revealing potential novel mechanistic insights and therapeutic targets to improve reendothelialization and reduce restenosis in diabetes.


Circulation | 2006

Estrogen Receptors α and β Mediate Contribution of Bone Marrow–Derived Endothelial Progenitor Cells to Functional Recovery After Myocardial Infarction

Hiromichi Hamada; Myeong Kon Kim; Atsushi Iwakura; Masaaki; Tina Thorne; Gangjian Qin; Jun Asai; Yoshiaki Tsutsumi; Haruki Sekiguchi; Marcy Silver; Andrea Wecker; Evelyn Bord; Yan Zhu; Raj Kishore; Douglas W. Losordo

Background— Estradiol (E2) modulates the kinetics of circulating endothelial progenitor cells (EPCs) and favorably affects neovascularization after ischemic injury. However, the roles of estrogen receptors &agr; (ER&agr;) and &bgr; (ER&bgr;) in EPC biology are largely unknown. Methods and Results— In response to E2, migration, tube formation, adhesion, and estrogen-responsive element–dependent gene transcription activities were severely impaired in EPCs obtained from ER&agr;-knockout mice (ER&agr;KO) and moderately impaired in ER&bgr;KO EPCs. The number of ER&agr;&Kgr;&Ogr; EPCs (42.4±1.5; P<0.001) and ER&bgr;KO EPCs (55.4±1.8; P= 0.03) incorporated into the ischemic border zone was reduced as compared with wild-type (WT) EPCs (72.5±1.3). In bone marrow transplantation (BMT) models, the number of mobilized endogenous EPCs in E2-treated mice was significantly reduced in ER&agr;KO BMT (WT mice transplanted with ER&agr;KO bone marrow) (2.03±0.18%; P= 0.004 versus WT BMT) and ER&bgr;KO BMT (2.62±0.07%; P= 0.02 versus WT) compared with WT BMT (2.87±0.13%) (WT to WT BMT as control) mice. Capillary density at the border zone of ischemic myocardium also was significantly reduced in ER&agr;KO BMT and ER&bgr;KO BMT compared with WT mice (WT BMT, 1718±75/mm2; ER&agr;KO BMT, 1107±48/mm2; ER&bgr;KO BMT, 1567±50/mm2). ER&agr; mRNA was expressed more abundantly on EPCs compared with ER&bgr;. Moreover, vascular endothelial growth factor was significantly downregulated on ER&agr;KO EPCs compared with WT EPCs both in vitro and in vivo. Conclusions— Both ER&agr; and ER&bgr; contribute to E2-mediated EPC activation and tissue incorporation and to preservation of cardiac function after myocardial infarction. ER&agr; plays a more prominent role in this process. Moreover, ER&agr; contributes to upregulation of vascular endothelial growth factor, revealing possible mechanisms of an effect of E2 on EPC biology. Finally, these data provide additional evidence of the importance of bone marrow–derived EPC phenotype in ischemic tissue repair.


Circulation | 2004

Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia.

Atsuhiko Kawamoto; Toshinori Murayama; Kengo Kusano; Masaaki; Tengiz Tkebuchava; Satoshi Shintani; Atsushi Iwakura; Ingrid Johnson; Patrick von Samson; Allison Hanley; Mary Gavin; Cindy Curry; Marcy Silver; Hong Ma; Marianne Kearney; Douglas W. Losordo

Background—We performed a series of investigations to test the hypothesis that combining angiogenic gene therapy and cytokine (CK)-induced endothelial progenitor cell mobilization would be superior to either strategy alone for treatment of chronic myocardial ischemia. Methods and Results—A swine model of chronic myocardial ischemia and a murine model of acute myocardial infarction were used in this study. In both models, animals were randomly assigned to 1 of 4 treatment groups: Combo group, intramyocardial vascular endothelial growth factor (VEGF)-2 gene transfer plus subcutaneous injection of CKs; VEGF-2, VEGF-2 gene transfer plus saline subcutaneously injected; CK, empty vector transfer plus CKs; and control, empty vector plus subcutaneous saline. Acute myocardial infarction was also induced in wild-type mice 4 weeks after bone marrow transplantation from enhanced green fluorescent protein transgenic mice to permit observation of bone marrow–derived cells in the myocardium after acute myocardial infarction. In chronic myocardial ischemia, combination therapy resulted in superior improvement in all indexes of perfusion and function compared with all other treatment groups. In the bone marrow transplant mice, double immunofluorescent staining revealed that the combination of CK-induced mobilization and local VEGF-2 gene transfer resulted in a significant increase in the number of bone marrow–derived cells incorporating into the neovasculature, indicating that recruitment and/or retention of bone marrow–derived progenitors was enhanced by mobilization and that local VEGF-2 gene transfer can provide signals for recruitment or incorporation of circulating progenitor cells. Conclusions—Mobilization of endothelial progenitor cells with cytokines potentiates VEGF-2 gene therapy for myocardial ischemia and enhances bone marrow cell incorporation into ischemic myocardium.


Journal of Experimental Medicine | 2006

Functional disruption of α4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization

Gangjian Qin; Masaaki; Marcy Silver; Andrea Wecker; Evelyn Bord; Hong Ma; Mary Gavin; David A. Goukassian; Young-sup Yoon; Thalia Papayannopoulou; Takayuki Asahara; Marianne Kearney; Tina Thorne; Cynthia Curry; Liz Eaton; Lindsay Heyd; Deepika Dinesh; Raj Kishore; Yan Zhu; Douglas W. Losordo

The cell surface receptor α4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of α4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of α4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively α4 integrin–expressing cells. In vivo, a single dose of anti–α4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti–α4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti–α4 integrin ex vivo or collected from α4 integrin–deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that α4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of α4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs.

Collaboration


Dive into the nan Masaaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Thorne

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kentaro Jujo

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Miki Horii

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge