Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Wecker is active.

Publication


Featured researches published by Andrea Wecker.


Journal of Clinical Investigation | 2005

Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

Young-sup Yoon; Andrea Wecker; Lindsay Heyd; Jong Seon Park; Tengiz Tkebuchava; Kengo Kusano; Allison Hanley; Heather Scadova; Gangjian Qin; Dong Hyun Cha; Kirby L. Johnson; Ryuichi Aikawa; Takayuki Asahara; Douglas W. Losordo

We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis.


Journal of Experimental Medicine | 2007

Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart

Hyun-Jai Cho; Namho Lee; Ji Yoon Lee; Yong Jin Choi; Masaaki; Andrea Wecker; Jin-Ok Jeong; Cynthia Curry; Gangian Qin; Young-sup Yoon

Noncellular differentiation effects have emerged as important mechanisms mediating therapeutic effects of stem or progenitor cell transplantation. Here, we investigated the expression patterns and sources of humoral factors and their regional and systemic biological effects after bone marrow (BM)-derived endothelial progenitor cell (EPC) transplantation into ischemic myocardium. Although most of the transplanted EPCs disappeared within a week, up-regulation of multiple humoral factors was sustained for longer than two weeks, which correlated well with the recovery of cardiac function. To determine the source of the humoral factors, we injected human EPCs into immunodeficient mice. Whereas the expression of human EPC (donor)-derived cytokines rapidly decreased to a nondetectable level within a week, up-regulation of mouse (recipient)-derived cytokines, including factors that could mobilize BM cells, was sustained. Histologically, we observed higher capillary density, a higher proliferation of myocardial cells, a lower cardiomyocyte apoptosis, and reduced infarct size. Furthermore, after EPC transplantation, BM-derived stem or progenitor cells were increased in the peripheral circulation and incorporated into the site of neovascularization and myocardial repair. These data indicate that myocardial EPC transplantation induces humoral effects, which are sustained by host tissues and play a crucial role in repairing myocardial injury.


Circulation | 2005

Endothelial Progenitor Cells Are Rapidly Recruited to Myocardium and Mediate Protective Effect of Ischemic Preconditioning via “Imported” Nitric Oxide Synthase Activity

Masaaki; Hiromi Nishimura; Atsushi Iwakura; Andrea Wecker; Elizabeth Eaton; Takayuki Asahara; Douglas W. Losordo

Background—The function of bone marrow–derived endothelial progenitor cells (EPCs) in repair of ischemic tissue has been the subject of intense scrutiny, and the capacity of these cells to contribute significantly to new blood vessels remains controversial. The possibility that EPCs could act as reservoirs of cytokines has been implied by several observations; however, a specific role for cytokine delivery has not been identified. Methods and Results—We performed a series of experiments that revealed the rapid recruitment of EPCs to the myocardium by very short periods of ischemia, so-called ischemic preconditioning. The recruited EPCs express an array of potentially cardioprotective cytokines including nitric oxide synthase isoforms. Bone marrow transplantation studies, using donor marrow null for nitric oxide synthase isoforms, revealed that both endothelial and inducible nitric oxide synthase derived from bone marrow cells play essential roles in the cardioprotective effect that normally occurs after ischemic preconditioning. Conclusions—These findings provide novel insights about the role of bone marrow–derived cells in ischemic preconditioning and also reveal that distinct mechanisms regulate recovery after ischemia-reperfusion and chronic ischemic injury.


Journal of Clinical Investigation | 2003

VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema

Young-sup Yoon; Toshinori Murayama; Edwin C. Gravereaux; Tengiz Tkebuchava; Marcy Silver; Cynthia Curry; Andrea Wecker; Rudolf Kirchmair; Chun Song Hu; Marianne Kearney; Alan B. Ashare; David G. Jackson; Hajime Kubo; Jeffrey M. Isner; Douglas W. Losordo

Although lymphedema is a common clinical condition, treatment for this disabling condition remains limited and largely ineffective. Recently, it has been reported that overexpression of VEGF-C correlates with increased lymphatic vessel growth (lymphangiogenesis). However, the effect of VEGF-C-induced lymphangiogenesis on lymphedema has yet to be demonstrated. Here we investigated the impact of local transfer of naked plasmid DNA encoding human VEGF-C (phVEGF-C) on two animal models of lymphedema: one in the rabbit ear and the other in the mouse tail. In a rabbit model, following local phVEGF-C gene transfer, VEGFR-3 expression was significantly increased. This gene transfer led to a decrease in thickness and volume of lymphedema, improvement of lymphatic function demonstrated by serial lymphoscintigraphy, and finally, attenuation of the fibrofatty changes of the skin, the final consequences of lymphedema. The favorable effect of phVEGF-C on lymphedema was reconfirmed in a mouse tail model. Immunohistochemical analysis using lymphatic-specific markers: VEGFR-3, lymphatic endothelial hyaluronan receptor-1, together with the proliferation marker Ki-67 Ab revealed that phVEGF-C transfection potently induced new lymphatic vessel growth. This study, we believe for the first time, documents that gene transfer of phVEGF-C resolves lymphedema through direct augmentation of lymphangiogenesis. This novel therapeutic strategy may merit clinical investigation in patients with lymphedema.


Circulation | 2004

Local Gene Transfer of phVEGF-2 Plasmid by Gene-Eluting Stents An Alternative Strategy for Inhibition of Restenosis

Dirk H. Walter; Manfred Cejna; Larry Diaz-Sandoval; Sean Willis; Laura Kirkwood; Peter William Stratford; Anne B. Tietz; Rudolf Kirchmair; Marcy Silver; Cindy Curry; Andrea Wecker; Young-sup Yoon; Regina Heidenreich; Allison Hanley; Marianne Kearney; Fermin O. Tio; Patrik Kuenzler; Jeffrey M. Isner; Douglas W. Losordo

Background—Drug-eluting stents represent a useful strategy for the prevention of restenosis using various antiproliferative drugs. These strategies share the liability of impairing endothelial recovery, thereby altering the natural biology of the vessel wall and increasing the associated risk of stent thrombosis. Accordingly, we tested the hypothesis that local delivery via gene-eluting stent of naked plasmid DNA encoding for human vascular endothelial growth factor (VEGF)-2 could achieve similar reductions in neointima formation while accelerating, rather than inhibiting, reendothelialization. Methods and Results—phVEGF 2-plasmid (100 or 200 μg per stent)–coated BiodivYsio phosphorylcholine polymer stents versus uncoated stents were deployed in a randomized, blinded fashion in iliac arteries of 40 normocholesterolemic and 16 hypercholesterolemic rabbits. Reendothelialization was nearly complete in the VEGF stent group after 10 days and was significantly greater than in control stents (98.7±1% versus 79.0±6%, P <0.01). At 3 months, intravascular ultrasound analysis revealed that lumen cross-sectional area (4.2±0.4 versus 2.27±0.3 mm2, P <0.001) was significantly greater and percent cross-sectional narrowing was significantly lower (23.4±6 versus 51.2±10, P <0.001) in VEGF stents compared with control stents implanted in hypercholesterolemic rabbits. Transgene expression was detectable in the vessel wall along with improved functional recovery of stented segments, resulting in a 2.4-fold increase in NO production. Conclusions—Acceleration of reendothelialization via VEGF-2 gene–eluting stents provides an alternative treatment strategy for the prevention of restenosis. VEGF-2 gene–eluting stents may be considered as a stand-alone or combination therapy.


Circulation Research | 2006

Endothelial Progenitor Thrombospondin-1 Mediates Diabetes-Induced Delay in Reendothelialization Following Arterial Injury

Masaaki; Hideya Takenaka; Jun Asai; Kayoko Ibusuki; Yusuke Mizukami; Kazuichi Maruyama; Young-sup Yoon; Andrea Wecker; Corinne Luedemann; Elizabeth Eaton; Marcy Silver; Tina Thorne; Douglas W. Losordo

Delayed reendothelialization contributes to restenosis after angioplasty and stenting in diabetes. Prior data have shown that bone marrow (BM)-derived endothelial progenitor cells (EPCs) contribute to endothelial recovery after arterial injury. We investigated the hypothesis that the EPC contribution to reendothelialization may be impaired in diabetes, resulting in delayed reendothelialization. Reendothelialization was significantly reduced in diabetic mice compared with nondiabetic mice in a wire-induced carotid denudation model. The EPC contribution to neoendothelium was significantly reduced in Tie2/LacZ BM-transplanted diabetic versus nondiabetic mice. BM from diabetic and nondiabetic mice was transplanted into nondiabetic mice, revealing that reendothelialization was impaired in the recipients of diabetic BM. To examine the relative roles of denuded artery versus EPCs in diabetes, we injected diabetic and nondiabetic EPCs intravenously after arterial injury in diabetic and nondiabetic mice. Diabetic EPCs recruitment to the neoendothelium was significantly reduced, regardless of the diabetic status of the recipient mice. In vitro, diabetic EPCs exhibited decreased migration and adhesion activities. Vascular endothelial growth factor and endothelial NO synthase expressions were also significantly reduced in diabetic EPCs. Notably, thrombospondin-1 mRNA expression was significantly upregulated in diabetic EPCs, associating with the decreased EPC adhesion activity in vitro and in vivo. Reendothelialization is impaired by malfunctioning EPCs in diabetes. Diabetic EPCs have phenotypic differences involving thrombospondin-1 expression compared with nondiabetic EPCs, revealing potential novel mechanistic insights and therapeutic targets to improve reendothelialization and reduce restenosis in diabetes.


Circulation | 2006

Estrogen Receptors α and β Mediate Contribution of Bone Marrow–Derived Endothelial Progenitor Cells to Functional Recovery After Myocardial Infarction

Hiromichi Hamada; Myeong Kon Kim; Atsushi Iwakura; Masaaki; Tina Thorne; Gangjian Qin; Jun Asai; Yoshiaki Tsutsumi; Haruki Sekiguchi; Marcy Silver; Andrea Wecker; Evelyn Bord; Yan Zhu; Raj Kishore; Douglas W. Losordo

Background— Estradiol (E2) modulates the kinetics of circulating endothelial progenitor cells (EPCs) and favorably affects neovascularization after ischemic injury. However, the roles of estrogen receptors &agr; (ER&agr;) and &bgr; (ER&bgr;) in EPC biology are largely unknown. Methods and Results— In response to E2, migration, tube formation, adhesion, and estrogen-responsive element–dependent gene transcription activities were severely impaired in EPCs obtained from ER&agr;-knockout mice (ER&agr;KO) and moderately impaired in ER&bgr;KO EPCs. The number of ER&agr;&Kgr;&Ogr; EPCs (42.4±1.5; P<0.001) and ER&bgr;KO EPCs (55.4±1.8; P= 0.03) incorporated into the ischemic border zone was reduced as compared with wild-type (WT) EPCs (72.5±1.3). In bone marrow transplantation (BMT) models, the number of mobilized endogenous EPCs in E2-treated mice was significantly reduced in ER&agr;KO BMT (WT mice transplanted with ER&agr;KO bone marrow) (2.03±0.18%; P= 0.004 versus WT BMT) and ER&bgr;KO BMT (2.62±0.07%; P= 0.02 versus WT) compared with WT BMT (2.87±0.13%) (WT to WT BMT as control) mice. Capillary density at the border zone of ischemic myocardium also was significantly reduced in ER&agr;KO BMT and ER&bgr;KO BMT compared with WT mice (WT BMT, 1718±75/mm2; ER&agr;KO BMT, 1107±48/mm2; ER&bgr;KO BMT, 1567±50/mm2). ER&agr; mRNA was expressed more abundantly on EPCs compared with ER&bgr;. Moreover, vascular endothelial growth factor was significantly downregulated on ER&agr;KO EPCs compared with WT EPCs both in vitro and in vivo. Conclusions— Both ER&agr; and ER&bgr; contribute to E2-mediated EPC activation and tissue incorporation and to preservation of cardiac function after myocardial infarction. ER&agr; plays a more prominent role in this process. Moreover, ER&agr; contributes to upregulation of vascular endothelial growth factor, revealing possible mechanisms of an effect of E2 on EPC biology. Finally, these data provide additional evidence of the importance of bone marrow–derived EPC phenotype in ischemic tissue repair.


Journal of Experimental Medicine | 2006

Functional disruption of α4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization

Gangjian Qin; Masaaki; Marcy Silver; Andrea Wecker; Evelyn Bord; Hong Ma; Mary Gavin; David A. Goukassian; Young-sup Yoon; Thalia Papayannopoulou; Takayuki Asahara; Marianne Kearney; Tina Thorne; Cynthia Curry; Liz Eaton; Lindsay Heyd; Deepika Dinesh; Raj Kishore; Yan Zhu; Douglas W. Losordo

The cell surface receptor α4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of α4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of α4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively α4 integrin–expressing cells. In vivo, a single dose of anti–α4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti–α4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti–α4 integrin ex vivo or collected from α4 integrin–deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that α4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of α4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs.


Circulation | 2009

Dual Angiogenic and Neurotrophic Effects of Bone Marrow–Derived Endothelial Progenitor Cells on Diabetic Neuropathy

Jin-Ok Jeong; Mee-Ohk Kim; Hyongbum Kim; Minyoung Lee; Sung-Whan Kim; Masaaki; Jung-uek Lee; Jiyoon Lee; Yong Jin Choi; Hyun-Jai Cho; Namho Lee; Marcy Silver; Andrea Wecker; Dong-Wook Kim; Young-sup Yoon

Background— Endothelial progenitor cells (EPCs) are known to promote neovascularization in ischemic diseases. Recent evidence suggested that diabetic neuropathy is causally related to impaired angiogenesis and deficient growth factors. Accordingly, we investigated whether diabetic neuropathy could be reversed by local transplantation of EPCs. Methods and Results— We found that motor and sensory nerve conduction velocities, blood flow, and capillary density were reduced in sciatic nerves of streptozotocin-induced diabetic mice but recovered to normal levels after hind-limb injection of bone marrow–derived EPCs. Injected EPCs were preferentially and durably engrafted in the sciatic nerves. A portion of engrafted EPCs were uniquely localized in close proximity to vasa nervorum, and a smaller portion of these EPCs were colocalized with endothelial cells. Multiple angiogenic and neurotrophic factors were significantly increased in the EPC-injected nerves. These dual angiogenic and neurotrophic effects of EPCs were confirmed by higher proliferation of Schwann cells and endothelial cells cultured in EPC-conditioned media. Conclusions— We demonstrate for the first time that bone marrow-derived EPCs could reverse various manifestations of diabetic neuropathy. These therapeutic effects were mediated by direct augmentation of neovascularization in peripheral nerves through long-term and preferential engraftment of EPCs in nerves and particularly vasa nervorum and their paracrine effects. These findings suggest that EPC transplantation could represent an innovative therapeutic option for treating diabetic neuropathy.


Circulation | 2005

Neuronal Nitric Oxide Synthase Mediates Statin-Induced Restoration of Vasa Nervorum and Reversal of Diabetic Neuropathy

Masaaki; Hiromi Nishimura; Kengo Kusano; Gangjian Qin; Young-sup Yoon; Andrea Wecker; Takayuki Asahara; Douglas W. Losordo

Background—Peripheral neuropathy is a frequent and major complication of diabetes. Methods and Results—Severe peripheral neuropathy developed in type II diabetic mice, characterized by significant slowing of motor and sensory nerve conduction velocities. Rosuvastatin restored nerve vascularity, including vessel size, and nerve function also recovered to the levels of nondiabetic mice. Neuronal nitric oxide synthase expression in sciatic nerves was reduced in diabetic mice but was preserved by rosuvastatin. Coadministration of a nitric oxide synthase inhibitor with rosuvastatin attenuated the beneficial effects of rosuvastatin on nerve function and limited the recovery of vasa nervorum and nerve function. In vitro, rosuvastatin inhibited downregulation of neuronal nitric oxide synthase expression induced by high-glucose conditions in cultured Schwann cells. Furthermore, Akt phosphorylation in Schwann cells, downregulated by high-glucose conditions, was also restored by rosuvastatin, consistent with the change of neuronal nitric oxide synthase expression. Akt inhibition independently reduced neuronal nitric oxide synthase expression in Schwann cells in low-glucose cultures. Conclusions—These data indicate that the HMG-CoA reductase inhibitor rosuvastatin has a favorable effect on diabetic neuropathy independent of its cholesterol-lowering effect. Our data provide evidence that this effect may be mediated in part via neuronal nitric oxide synthase/nitric oxide and phosphatidylinositol 3-kinase/Akt-signaling pathways and also suggest that restoration or preservation of the microcirculation of the sciatic nerve may be involved.

Collaboration


Dive into the Andrea Wecker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Thorne

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gangjian Qin

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge