Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masae Horinouchi is active.

Publication


Featured researches published by Masae Horinouchi.


Applied and Environmental Microbiology | 2003

A New Bacterial Steroid Degradation Gene Cluster in Comamonas testosteroni TA441 Which Consists of Aromatic-Compound Degradation Genes for Seco-Steroids and 3-Ketosteroid Dehydrogenase Genes

Masae Horinouchi; Toshiaki Hayashi; Takako Yamamoto; Toshiaki Kudo

ABSTRACT In Comamonas testosteroni TA441, testosterone is degraded via aromatization of the A ring, which is cleaved by the meta-cleavage enzyme TesB, and further degraded by TesD, the hydrolase for the product of TesB. TesEFG, encoded downstream of TesD, are probably hydratase, aldolase, and dehydrogenase for degradation of 2-oxohex-4-enoicacid, one of the products of TesD. Here we present a new and unique steroid degradation gene cluster in TA441, which consists of ORF18, ORF17, tesI, tesH, ORF11, ORF12, and tesDEFG. TesH and TesI are 3-ketosteroid-Δ1-dehydrogenase and 3-ketosteroid-Δ4(5α)-dehydrogenase, respectively, which work in the early steps of steroid degradation. ORF17 probably encodes the reductase component of 9α-hydroxylase for 1,4-androstadiene-3,17-dione, which is the product of TesH in testosterone degradation. Gene disruption experiments showed that these genes are necessary for steroid degradation and do not have any isozymes in TA441. By Northern blot analysis, these genes were shown to be induced when TA441 was incubated with steroids (testosterone and cholic acid) but not with aromatic compounds [phenol, biphenyl, and 3-(3-hydroxyphenyl)propionic acid], indicating that these genes function exclusively in steroid degradation.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Steroid degradation in Comamonas testosteroni

Masae Horinouchi; Toshiaki Hayashi; Toshiaki Kudo

Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.


Microbiology | 2001

Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441

Masae Horinouchi; Takako Yamamoto; Katsuhiko Taguchi; Hiroyuki Arai; Toshiaki Kudo

Comamonas testosteroni metabolizes testosterone as the sole carbon source via a meta-cleavage reaction. A meta-cleavage enzyme gene, tesB, was cloned from C. testosteroni TA441. The deduced N-terminal amino acid sequence of tesB matched that of the purified meta-cleavage enzyme which is induced in TA441 during growth on testosterone as the sole carbon source. The tesB-disrupted mutant did not show growth on testosterone, suggesting that tesB is necessary for TA441 to grow on testosterone. Downstream from tesB, three putative ORFs which encode products also necessary for growth of TA441 on testosterone were identified. The usual substrate of TesB is probably 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione. Although this compound was not identified in the gene disrupted mutants, accumulation of upstream metabolites of testosterone degradation, 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione, was shown by TLC analysis.


Applied and Environmental Microbiology | 2003

Gene Encoding the Hydrolase for the Product of the meta-Cleavage Reaction in Testosterone Degradation by Comamonas testosteroni

Masae Horinouchi; Toshiaki Hayashi; Hiroyuki Koshino; Takako Yamamoto; Toshiaki Kudo

ABSTRACT In a previous study we isolated the meta-cleavage enzyme gene, tesB, that encodes an enzyme that carries out a meta-cleavage reaction in the breakdown of testosterone by Comamonas testeroni TA441 (M. Horinouchi et al., Microbiology 147:3367-3375, 2001). Here we report the isolation of a gene, tesD, that encodes a hydrolase which acts on the product of the meta-cleavage reaction. We isolated tesD by using a Tn5 mutant of TA441 that showed limited growth on testosterone. TesD exhibited ca. 40% identity in amino acid sequence with BphDs, known hydrolases of biphenyl degradation in Pseudomonas spp. The TesD-disrupted mutant showed limited growth on testosterone, and the culture shows an intense yellow color. High-pressure liquid chromatography analysis of the culture of TesD-disrupted mutant incubated with testosterone detected five major intermediate compounds, one of which, showing yellow color under neutral conditions, was considered to be the product of the meta-cleavage reaction. The methylation product was analyzed and identified as methyl-4,5-9,10-diseco-3-methoxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oate, indicating that the substrate of TesD in testosterone degradation is 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid. 4,5-9,10-Diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid was transformed by Escherichia coli-expressed TesD. Downstream of tesD, we identified tesE, F, and G, which encode for enzymes that degrade one of the products of 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid converted by TesD.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Steroid degradation genes in Comamonas testosteroni TA441: Isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot.

Masae Horinouchi; Tomokazu Kurita; Toshiaki Hayashi; Toshiaki Kudo

In previous studies, we identified two major Comamonas testosteroni TA441 gene clusters involved in steroid degradation. Because most of the genes included in these clusters were revealed to be involved in degradation of basic steroidal structures and a few were suggested to be involved in the degradation of modified steroid compounds, we investigated the spectrum of steroid compounds degradable for TA441 to better identify the genes involved in steroid degradation. TA441 degraded testosterone, progesterone, epiandrosterone, dehydroepiandrosterone, cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. The results suggested TA441 having 3α-dehydrogenase and Δ4(5)-isomerase, and 3β-,17β-dehydrogenase gene, we isolated these genes, all of which had high homology to the corresponding genes of C. testosteroni ATCC11996. Results of gene-disruption experiments indicated that 3β,17β-dehydrogenase is a unique 3β-dehydrogenase which also acts as a 17β-dehydrogenase in TA441, and there will be at least one more enzyme with 17β-dehydrogenating activity. The 3α-dehydrogenase and Δ4(5)-isomerase genes were found adjacent in the DNA region between the two main steroid degradation gene clusters together with a number of other genes that may be involved in steroid degradation, suggesting the presence of a steroid degradation gene hot spot over 100 kb in size in TA441.


Applied and Environmental Microbiology | 2005

Identification of 9,17-Dioxo-1,2,3,4,10,19-Hexanorandrostan-5-oic Acid, 4-Hydroxy-2-Oxohexanoic Acid, and 2-Hydroxyhexa-2,4-Dienoic Acid and Related Enzymes Involved in Testosterone Degradation in Comamonas testosteroni TA441

Masae Horinouchi; Toshiaki Hayashi; Hiroyuki Koshino; Tomokazu Kurita; Toshiaki Kudo

ABSTRACT Comamonas testosteroni TA441 utilizes testosterone via aromatization of the A ring followed by meta-cleavage of the ring. The product of the meta-cleavage reaction, 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid, is degraded by a hydrolase, TesD. We directly isolated and identified two products of TesD as 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and (2Z,4Z)-2-hydroxyhexa-2,4-dienoic acid. The latter was a pure 4Z isomer. 2-Hydroxyhexa-2,4-dienoic acid was converted by a hydratase, TesE, and the product isolated from the reaction solution was identified as 2-hydroxy-4-hex-2-enolactone, indicating the direct product of TesE to be 4-hydroxy-2-oxohexanoic acid.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441.

Masae Horinouchi; Toshiaki Hayashi; Toshiaki Kudo

Steroid degradation genes of Comamonas testosteroni TA441 are encoded in at least two gene clusters: one containing the meta-cleavage enzyme gene tesB; and another consisting of ORF18, 17, tesI, H, ORF11, 12, and tesDEFG. TesH and I are, respectively, the Delta(1)- and Delta(4)(5alpha)-dehydrogenase of the 3-ketosteroid, TesD is the hydrolase for the product of meta-cleavage reaction, and TesEFG degrade one of the product of TesD. In this report, we describe the identification of the function of ORF11 (tesA2) and 12 (tesA1). The TesA1- and TesA2-disrupted mutant accumulated two characteristic intermediate compounds, which were identified as 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3-HSA) and its hydroxylated derivative, 3,17-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione by MS and NMR analysis. A complementation experiment using a broad-host range plasmid showed that both TesA1 and A2 are necessary for hydroxylation of 3-HSA to 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3,4-DHSA).


The Journal of Steroid Biochemistry and Molecular Biology | 2006

ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and its derivatives after incubation with steroids

Masae Horinouchi; Toshiaki Hayashi; Hiroyuki Koshino; Toshiaki Kudo

In a steroid degradation gene cluster of Comamonas testosteroni TA441 consisting of ORF18, 17 and tesIHA2A1DEFG, ORF18 was implicated in encoding a CoA-transferase by database searches, but the matching substrate was not clear. In this study, ORF18 was shown to be necessary for conversion of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, a product of hydrolysis of 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid in steroid degradation by TA441. The ORF18-disrupted mutant accumulates 7-hydroxy-9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and 7,12-dihydroxy-9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid when incubated with chenodeoxycholic acid and cholic acid, respectively.


Journal of Bacteriology | 2008

Identification of Genes Involved in Inversion of Stereochemistry of a C-12 Hydroxyl Group in the Catabolism of Cholic Acid by Comamonas testosteroni TA441

Masae Horinouchi; Toshiaki Hayashi; Hiroyuki Koshino; Michal Malon; Takako Yamamoto; Toshiaki Kudo

Comamonas testosteroni TA441 degrades steroids such as testosterone via aromatization of the A ring, followed by meta-cleavage of the ring. In the DNA region upstream of the meta-cleavage enzyme gene tesB, two genes required during cholic acid degradation for the inversion of an alpha-oriented hydroxyl group on C-12 were identified. A dehydrogenase, SteA, converts 7 alpha,12 alpha-dihydroxyandrosta-1,4-diene-3,17-dione to 7 alpha-hydroxyandrosta-1,4-diene-3,12,17-trione, and a hydrogenase, SteB, converts the latter to 7 alpha,12 beta-dihydroxyandrosta-1,4-diene-3,17-dione. Both enzymes are members of the short-chain dehydrogenase/reductase superfamily. The transformation of 7 alpha,12 alpha-dihydroxyandrosta-1,4-diene-3,17-dione to 7 alpha,12 beta-dihydroxyandrosta-1,4-diene-3,17-dione is carried out far more effectively when both SteA and SteB are involved together. These two enzymes are encoded by two adjacent genes and are presumed to be expressed together. Inversion of the hydroxyl group at C-12 is indispensable for the subsequent effective B-ring cleavage of the androstane compound. In addition to the compounds already mentioned, 12 alpha-hydroxyandrosta-1,4,6-triene-3,17-dione and 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione were identified as minor intermediate compounds in cholic acid degradation by C. testosteroni TA441.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

Identification of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid and β-oxidation products of the C-17 side chain in cholic acid degradation by Comamonas testosteroni TA441

Masae Horinouchi; Toshiaki Hayashi; Hiroyuki Koshino; Michal Malon; Hiroshi Hirota; Toshiaki Kudo

Comamonas testosteroni degrades testosterone into 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and 2-hydroxyhexa-2,4-dienoic acid via aromatization of the A-ring. The former compound is suggested to be degraded further by β-oxidation, but the details of the process remain unclear. In this study, we identified 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid as an intermediate compound in the β-oxidation of this compound. ORF32, located in one of the two main steroid degradation gene clusters, was shown to be indispensable for the conversion of this compound. A homology search indicated that ORF32 encodes a hydratase for the CoA-ester, suggesting that ORF32 encodes a hydratase that adds a water molecule to a double bond at C-6 of the CoA-ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. From the culture of an ORF32-disrupted mutant incubated with cholic acid for a short period (around two days, when a considerable number of intermediate compounds were detected by HPLC), 7α,12α-dihydroxy-3-oxochola-1,4-dien-24-oic acid, 7α,12α-dihydroxy-3-oxochol-4-en-24-oic acid, 12α-hydroxy-3-oxochola-4,6-dien-24-oic acid, 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylic acid, 12α-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid, 7α,12α-dihydroxy-3-oxopregn-4-ene-20-carboxylic acid, 12α-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid, 7α-hydroxy-3-oxopregna-4,17(20)-diene-20-carboxylic acid, and 3-oxopregna-4,6,17(20)-triene-20-carboxylic acid were isolated as intermediate compounds of C-17 side-chain degradation. The presence of these compounds implies that the process of degradation of the C-17 side chain in C. testosteroni will be similar to the process in Pseudomonas. The final two compounds, which have a double bond at the C-17(20) position, are here identified for the first time, to the best of our knowledge, as intermediate compounds in bacterial steroid degradation; their composition suggests that the remaining three carbons at the C-17 position would be removed oxidatively as a propionic acid derivative.

Collaboration


Dive into the Masae Horinouchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiaki Kudo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michal Malon

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Hirota

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge