Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiaki Kudo is active.

Publication


Featured researches published by Toshiaki Kudo.


Science | 2008

Genome of an Endosymbiont Coupling N2 Fixation to Cellulolysis Within Protist Cells in Termite Gut

Yuichi Hongoh; Vineet K. Sharma; Tulika Prakash; Satoko Noda; Hidehiro Toh; Todd D. Taylor; Toshiaki Kudo; Yoshiyuki Sakaki; Atsushi Toyoda; Masahira Hattori; Moriya Ohkuma

Termites harbor diverse symbiotic gut microorganisms, the majority of which are as yet uncultivable and their interrelationships unclear. Here, we present the complete genome sequence of the uncultured Bacteroidales endosymbiont of the cellulolytic protist Pseudotrichonympha grassii, which accounts for 70% of the bacterial cells in the gut of the termite Coptotermes formosanus. Functional annotation of the chromosome (1,114,206 base pairs) unveiled its ability to fix dinitrogen and recycle putative host nitrogen wastes for biosynthesis of diverse amino acids and cofactors, and import glucose and xylose as energy and carbon sources. Thus, nitrogen fixation and cellulolysis are coupled within the protists cells. This highly evolved symbiotic system probably underlies the ability of the worldwide pest termites Coptotermes to use wood as their sole food.


Molecular Ecology | 2005

Intracolony variation of bacterial gut microbiota among castes and ages in the fungus‐growing termite Macrotermes gilvus

Yuichi Hongoh; L. Ekpornprasit; Tetsushi Inoue; Shigeharu Moriya; Savitr Trakulnaleamsai; Moriya Ohkuma; Napavarn Noparatnaraporn; Toshiaki Kudo

The fungus‐growing termites Macrotermes cultivate the obligate ectosymbiontic fungi, Termitomyces. While their relationship has been extesively studied, little is known about the gut bacterial symbionts, which also presumably play a crucial role for the nutrition of the termite host. In this study, we investigated the bacterial gut microbiota in two colonies of Macrotermes gilvus, and compared the diversity and community structure of bacteria among nine termite morphotypes, differing in caste and/or age, using terminal restriction fragment length polymorphism (T‐RFLP) and clonal analysis of 16S rRNA. The obtained molecular community profiles clustered by termite morphotype rather than by colony, and the clustering pattern was clearly more related to a difference in age than to caste. Thus, we suggest that the bacterial gut microbiota change in relation to the food of the termite, which comprises fallen leaves and the fungus nodules of Termitomyces in young workers, and leaves degraded by the fungi, in old workers. Despite these intracolony variations in bacterial gut microbiota, their T‐RFLP profiles formed a distinct cluster against those of the fungus garden, adjacent soil and guts of sympatric wood‐feeding termites, implying a consistency and uniqueness of gut microbiota in M. gilvus. Since many bacterial phylotypes from M. gilvus formed monophyletic clusters with those from distantly related termite species, we suggest that gut bacteria have co‐evolved with the termite host and form a microbiota specific to a termite taxonomic and/or feeding group, and furthermore, to caste and age within a termite species.


Current Genetics | 2008

Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity

Takayuki Motoyama; Naoko Ochiai; Masumi Morita; Yuki Iida; Ron Usami; Toshiaki Kudo

Rice blast fungus (Magnaporthe oryzae) has ten histidine kinases (HKs), one histidine-containing phosphotransfer protein (HPt), and three response regulators (RRs) as putative components of the two-component signal transduction system (TCS). Here, we constructed knockout mutants of two putative RR genes (MoSSK1, MoSKN7) and a RR homolog gene (MoRIM15) to analyze the roles of TCS in environmental adaptation and pathogenicity. The ΔMossk1 strain had increased sensitivity to high osmolarity and decreased sensitivity to fludioxonil. The ΔMoskn7 strain had slightly decreased sensitivity to fludioxonil. The involvement of MoSkn7 in the osmoresponse was obvious only on the ΔMossk1 background. These results show that MoSsk1 and MoSkn7 are major and minor contributors, respectively, in the high osmolarity response and fludioxonil action. The ΔMossk1 strain was more osmosensitive than the predicted upstream HK gene disruptant Δhik1, which shows sugar-specific high osmolarity sensitivity. The ΔMossk1 and ΔMoskn7 strains showed enhanced hyphal melanization, suggesting that RRs regulate hyphal melanization. MoSsk1 and MoRim15 are required for full virulence, because the ΔMossk1 and ΔMorim15 strains exhibited reduced virulence. These results suggest that the putative RRs of the rice blast fungus are involved in the osmotic stress response, fludioxonil action, and pathogenicity.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

Steroid degradation genes in Comamonas testosteroni TA441: Isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot.

Masae Horinouchi; Tomokazu Kurita; Toshiaki Hayashi; Toshiaki Kudo

In previous studies, we identified two major Comamonas testosteroni TA441 gene clusters involved in steroid degradation. Because most of the genes included in these clusters were revealed to be involved in degradation of basic steroidal structures and a few were suggested to be involved in the degradation of modified steroid compounds, we investigated the spectrum of steroid compounds degradable for TA441 to better identify the genes involved in steroid degradation. TA441 degraded testosterone, progesterone, epiandrosterone, dehydroepiandrosterone, cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. The results suggested TA441 having 3α-dehydrogenase and Δ4(5)-isomerase, and 3β-,17β-dehydrogenase gene, we isolated these genes, all of which had high homology to the corresponding genes of C. testosteroni ATCC11996. Results of gene-disruption experiments indicated that 3β,17β-dehydrogenase is a unique 3β-dehydrogenase which also acts as a 17β-dehydrogenase in TA441, and there will be at least one more enzyme with 17β-dehydrogenating activity. The 3α-dehydrogenase and Δ4(5)-isomerase genes were found adjacent in the DNA region between the two main steroid degradation gene clusters together with a number of other genes that may be involved in steroid degradation, suggesting the presence of a steroid degradation gene hot spot over 100 kb in size in TA441.


Bioscience, Biotechnology, and Biochemistry | 2009

Termite-microbe symbiotic system and its efficient degradation of lignocellulose.

Toshiaki Kudo

Termites thrive in the tropics and play an important role in lignocellulose degradation. This ability depends mainly on intestine microbes in the gut, but most of them are so-called unculturable microbes, which can not be cultivated by traditional culture methods. The recent development of molecular approaches such as the PCR method has made it possible to access the enormous numbers of unculturable microbes in the gut of termites. This review explains our research on the ecological role of the termite, the termite-microbe symbiotic system, and the functions of lignocellulose degradation using various molecular methods. In the future, new technologies such as genomics should make it possible to analyze and utilize unculturable microbial resources in natural environments.


Applied and Environmental Microbiology | 2012

Characterization of Halomonas sp. Strain H11 α-Glucosidase Activated by Monovalent Cations and Its Application for Efficient Synthesis of α-d-Glucosylglycerol

Teruyo Ojima; Wataru Saburi; Takeshi Yamamoto; Toshiaki Kudo

ABSTRACT An α-glucosidase (HaG) with the following unique properties was isolated from Halomonas sp. strain H11: (i) high transglucosylation activity, (ii) activation by monovalent cations, and (iii) very narrow substrate specificity. The molecular mass of the purified HaG was estimated to be 58 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). HaG showed high hydrolytic activities toward maltose, sucrose, and p-nitrophenyl α-d-glucoside (pNPG) but to almost no other disaccharides or malto-oligosaccharides higher than trisaccharides. HaG showed optimum activity to maltose at 30°C and pH 6.5. Monovalent cations such as K+, Rb+, Cs+, and NH4 + increased the enzymatic activity to 2- to 9-fold of the original activity. These ions shifted the activity-pH profile to the alkaline side. The optimum temperature rose to 40°C in the presence of 10 mM NH4 +, although temperature stability was not affected. The apparent Km and k cat values for maltose and pNPG were significantly improved by monovalent cations. Surprisingly, k cat/Km for pNPG increased 372- to 969-fold in their presence. HaG used some alcohols as acceptor substrates in transglucosylation and was useful for efficient synthesis of α-d-glucosylglycerol. The efficiency of the production level was superior to that of the previously reported enzyme Aspergillus niger α-glucosidase in terms of small amounts of by-products. Sequence analysis of HaG revealed that it was classified in glycoside hydrolase family 13. Its amino acid sequence showed high identities, 60%, 58%, 57%, and 56%, to Xanthomonas campestris WU-9701 α-glucosidase, Xanthomonas campestris pv. raphani 756C oligo-1,6-glucosidase, Pseudomonas stutzeri DSM 4166 oligo-1,6-glucosidase, and Agrobacterium tumefaciens F2 α-glucosidase, respectively.


Bioscience, Biotechnology, and Biochemistry | 2011

Screening of Optimal Cellulases from Symbiotic Protists of Termites through Expression in the Secretory Pathway of Saccharomyces cerevisiae

Nemuri Todaka; Risa Nakamura; Sigeharu Moriya; Moriya Ohkuma; Toshiaki Kudo; Haruo Takahashi; Nobuhiro Ishida

For direct and efficient ethanol production from cellulosic materials, we screened optimal cellulases from symbiotic protists of termites through heterologous expression with Saccharomyces cerevisiae. 11 cellulases, belonging to glycoside hydrolase families 5, 7, and 45 endoglucanases (EGs), were confirmed to produce with S. cerevisiae for the first time. A recombinant yeast expressing SM2042B24 EG I was more efficient at degrading carboxylmethyl cellulose than was Trichoderma reesei EG I, a major EG with high cellulolytic activity.


Genome Announcements | 2014

Draft Genome Sequences of Psychrobacter Strains JCM 18900, JCM 18901, JCM 18902, and JCM 18903, Isolated Preferentially from Frozen Aquatic Organisms

Toshiaki Kudo; Akihiro Kidera; Muneaki Kida; Ayumi Kawauchi; Ryo Shimizu; Tomomi Nakahara; Xiaochi Zhang; Akinori Yamada; Masao Amano; Yuki Hamada; Shigeto Taniyama; Osamu Arakawa; Asami Yoshida; Kenshiro Oshima; Wataru Suda; Hirokazu Kuwahara; Yuichi Nogi; Keiko Kitamura; Masahiro Yuki; Toshiya Iida; Shigeharu Moriya; Tetsushi Inoue; Yuichi Hongoh; Masahira Hattori; Moriya Ohkuma

ABSTRACT Four Psychrobacter strains, JCM 18900, JCM 18901, JCM 18902, and JCM 18903, related to either Psychrobacter nivimaris or Psychrobacter cibarius, were isolated from frozen marine animals. The genome information of these four strains will be useful for studies of their physiology and adaptation properties to frozen conditions.


Genome Announcements | 2014

Draft Genome Sequences of Geomicrobium sp. Strains JCM 19037, JCM 19038, JCM 19039, and JCM 19055, Isolated from Aquatic Samples

Toshiaki Kudo; Tomomi Nakahara; Xiaochi Zhang; Shigeto Taniyama; Osamu Arakawa; Shinji Murase; Hideaki Nakata; Kenshiro Oshima; Wataru Suda; Keiko Kitamura; Toshiya Iida; Yumi Oshida; Tetsushi Inoue; Yuichi Hongoh; Masahira Hattori; Moriya Ohkuma

ABSTRACT Haloalkaliphilic strains JCM 19037, JCM 19038, JCM 19039, and JCM 19055, closely related to Geomicrobium sediminis, were isolated from aquatic samples, and their draft genome sequences were determined. The genome information of these four strains will be useful for studies of their physiology and ecology.


Genome Announcements | 2014

Draft Genome Sequences of Vibrio sp. Strains Isolated from Tetrodotoxin-Bearing Scavenging Gastropod

Toshiaki Kudo; Ayumi Kawauchi; Tomomi Nakahara; Xiaochi Zhang; Shigeto Taniyama; Tomohiro Takatani; Osamu Arakawa; Kenshiro Oshima; Wataru Suda; Keiko Kitamura; Toshiya Iida; Takao Iino; Tetsushi Inoue; Yuichi Hongoh; Masahira Hattori; Moriya Ohkuma

ABSTRACT Vibrio sp. strains JCM 18905 and JCM 19053 were isolated from a tetrodotoxin (TTX)-bearing scavenging gastropod, and Vibrio sp. strain JCM 18904 was isolated from a sea cucumber. All these are closely related to Vibrio alginolyticus. Their comparative genome information is useful for studies of TTX production in bacteria.

Collaboration


Dive into the Toshiaki Kudo's collaboration.

Top Co-Authors

Avatar

Yuichi Hongoh

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge