Masaharu Somiya
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masaharu Somiya.
Scientific Reports | 2012
Masumi Iijima; Masaharu Somiya; Nobuo Yoshimoto; Tomoaki Niimi; Shun'ichi Kuroda
Oriented immobilization of sensing molecules on solid phases is an important issue in biosensing. In case of immunosensors, it is essential to scrutinize not only the direction and shape of immunoglobulin G (IgG) in solution but also the real-time movement of IgGs, which cannot be achieved by conventional techniques. Recently, we developed bio-nanocapsules (BNCs) displaying a tandem form of the IgG Fc-binding Z domain derived from Staphylococcus aureus protein A (ZZ-BNC) to enhance the sensitivity and antigen-binding capacity of IgG via oriented-immobilization. Here, we used high-speed atomic force microscopy (HS-AFM) to reveal the fine surface structure of ZZ-BNC and observe the movement of mouse IgG3 molecules tethered onto ZZ-BNC in solution. ZZ-BNC was shown to act as a scaffold for oriented immobilization of IgG, enabling its Fv regions to undergo rotational Brownian motion. Thus, HS-AFM could decipher real-time movement of sensing molecules on biosensors at the single molecule level.
International Journal of Nanomedicine | 2015
Qiushi Liu; Joohee Jung; Masaharu Somiya; Masumi Iijima; Nobuo Yoshimoto; Tomoaki Niimi; Andrés D. Maturana; Seol Hwa Shin; Seong-Yun Jeong; Eun Kyung Choi; Shun'ichi Kuroda
Bionanocapsules (BNCs) are hollow nanoparticles consisting of hepatitis B virus (HBV) envelope L proteins and have been shown to deliver drugs and genes specifically to human hepatic tissues by utilizing HBV-derived infection machinery. The complex of BNCs with liposomes (LPs), the BNC–LP complexes (a LP surrounded by BNCs in a rugged spherical form), could also become active targeting nanocarriers by the BNC function. In this study, under acidic conditions and high temperature, BNCs were found to fully fuse with LPs (smooth-surfaced spherical form), deploying L proteins with a membrane topology similar to that of BNCs (ie, virosomes displaying L proteins). Doxorubicin (DOX) was efficiently encapsulated via the remote loading method at 14.2%±1.0% of total lipid weight (mean ± SD, n=3), with a capsule size of 118.2±4.7 nm and a ζ-potential of −51.1±1.0 mV (mean ± SD, n=5). When mammalian cells were exposed to the virosomes, the virosomes showed strong cytotoxicity in human hepatic cells (target cells of BNCs), but not in human colon cancer cells (nontarget cells of BNCs), whereas LPs containing DOX and DOXOVES (structurally stabilized PEGylated LPs containing DOX) did not show strong cytotoxicity in either cell type. Furthermore, the virosomes preferentially delivered DOX to the nuclei of human hepatic cells. Xenograft mice harboring either target or nontarget cell-derived tumors were injected twice intravenously with the virosomes containing DOX at a low dose (2.3 mg/kg as DOX, 5 days interval). The growth of target cell-derived tumors was retarded effectively and specifically. Next, the combination of high dose (10.0 mg/kg as DOX, once) with tumor-specific radiotherapy (3 Gy, once after 2 hours) exhibited the most effective antitumor growth activity in mice harboring target cell-derived tumors. These results demonstrated that the HBV-based virosomes containing DOX could be an effective antitumor nanomedicine specific to human hepatic tissues, especially in combination with radiotherapy.
Journal of Controlled Release | 2015
Masaharu Somiya; Yasuo Sasaki; Takashi Matsuzaki; Qiushi Liu; Masumi Iijima; Nobuo Yoshimoto; Tomoaki Niimi; Andrés D. Maturana; Shun'ichi Kuroda
Bio-nanocapsules (BNCs) are a hollow nanoparticle consisting of about 100-nm liposome (LP) embedding about 110 molecules of hepatitis B virus (HBV) surface antigen (HBsAg) L protein as a transmembrane protein. Owing to the human hepatocyte-recognizing domains on the N-terminal region (pre-S1 region), BNCs have recently been shown to attach and enter into human hepatic cells using the early infection mechanism of HBV. Since BNCs could form a complex with an LP containing various drugs and genes, BNC-LP complexes have been used as a human hepatic cell-specific drug and gene-delivery system in vitro and in vivo. However, the role of BNCs in cell entry and intracellular trafficking of payloads in BNC-LP complexes has not been fully elucidated. In this study, we demonstrate that low pH-dependent fusogenic activity resides in the N-terminal part of pre-S1 region (NPLGFFPDHQLDPAFG), of which the first FF residues are essential for the activity, and which facilitates membrane fusion between LPs in vitro. Moreover, BNC-LP complexes can bind human hepatic cells specifically, enter into the cells via clathrin-mediated endocytosis, and release their payloads mostly into the cytoplasm. Taken together, the BNC portion of BNC-LP complexes can induce membrane fusion between LPs and endosomal membranes under low pH conditions, and thereby facilitate the endosomal escape of payloads. Furthermore, the fusogenic domain of the pre-S1 region of HBsAg L protein may play a pivotal role in the intracellular trafficking of not only BNC-LP complexes but also of HBV.
International Journal of Pharmaceutics | 2015
Masaharu Somiya; Kotomi Yamaguchi; Qiushi Liu; Tomoaki Niimi; Andrés D. Maturana; Masumi Iijima; Nobuo Yoshimoto; Shun'ichi Kuroda
Cationic liposomes (LPs) have been utilized for short interfering RNA (siRNA) delivery in vitro and in vivo owing to their high affinity for siRNA via electrostatic binding. However, both cytotoxicity and non-specific adsorption of cationic LPs in the body have prevented clinical siRNA applications. These situations have led to siRNA encapsulation in non-cationic LPs. We found that the instillation of neutral phospholipids dissolved in ethanol into aqueous solutions containing siRNA and CaCl2 resulted in high siRNA encapsulation (siRNA encapsulation efficiency: ∼ 80%; siRNA weight ratio: ∼ 10 wt% of LPs). The products were monodispersed, ∼ 200 nm, and negatively charged. Furthermore, when phospholipids with a high-phase transition temperature or cholesterol were used, the encapsulation efficiency and siRNA content remained high. Although anionic LPs could not encapsulate siRNAs using this method, the use of cholesterol-conjugated siRNA helped achieve substantial siRNA encapsulation in anionic LPs. These non-cationic siRNA-containing LPs did not show cytotoxicity in vitro, and could be formed with polyethylene glycol-conjugated phospholipids. When conjugated with targeting ligand, the non-cationic siRNA-containing LPs could suppress the expression of target gene in vitro. These data demonstrate that our preparation method would be suitable for large-scale LP production for systemic siRNA delivery.
Bioorganic & Medicinal Chemistry | 2012
Masaharu Somiya; Nobuo Yoshimoto; Masumi Iijima; Tomoaki Niimi; Takehisa Dewa; Joohee Jung; Shun'ichi Kuroda
We have previously demonstrated that lipoplex, a complex of cationic liposomes and DNA, could be targeted to human hepatic cells in vitro and in vivo by conjugation with bio-nanocapsules (BNCs) comprising hepatitis B virus (HBV) surface antigen L protein particles. Because the BNC-lipoplex complexes were endowed with the human hepatic cell-specific infection machinery from HBV, the complexes showed excellent specific transfection efficiency in human hepatic cells. In this study, we have found that polyplex (a complex of polyethyleneimine (PEI) and DNA) could form stable complexes with BNCs spontaneously. The diameter and ζ-potential of BNC-polyplex complexes are about 240 nm and +3.54 mV, respectively, which make them more suitable for in vivo use than polyplex alone. BNC-polyplex complexes with an N/P ratio (the molar ratio of the amine group of PEI to the phosphate group of DNA) of 40 showed excellent transfection efficiency in human hepatic cells. When acidification of endosomes was inhibited by bafilomycin A1, the complexes showed higher transfection efficiency than polyplex itself, strongly suggesting that the complexes escaped from endosomes by both fusogenic activity of BNCs and proton sponge activity of polyplex. Furthermore, the cytotoxicity is comparable to that of polyplex of the same N/P value. Thus, BNC-polyplex complexes would be a promising gene delivery carrier for human liver-specific gene therapy.
Virology | 2016
Masaharu Somiya; Qiushi Liu; Nobuo Yoshimoto; Masumi Iijima; Kenji Tatematsu; Tadashi Nakai; Toshihide Okajima; Kazuyuki Kuroki; Keiji Ueda; Shun'ichi Kuroda
Sodium taurocholate cotransporting polypeptide (NTCP) was recently discovered as a hepatitis B virus (HBV) receptor, however, the detailed mechanism of HBV entry is not yet fully understood. We investigated the cellular entry pathway of HBV using recombinant HBV surface antigen L protein particles (bio-nanocapsules, BNCs). After the modification of L protein in BNCs with myristoyl group, myristoylated BNCs (Myr-BNCs) were found to bind to NTCP in vitro, and inhibit in vitro HBV infection competitively, suggesting that Myr-BNCs share NTCP-dependent infection machinery with HBV. Nevertheless, the cellular entry rates of Myr-BNCs and plasma-derived HBV surface antigen (HBsAg) particles were the same as those of BNCs in NTCP-overexpressing HepG2 cells. Moreover, the cellular entry of these particles was mainly driven by heparan sulfate proteoglycan-mediated endocytosis regardless of NTCP expression. Taken together, cell-surface NTCP may not be involved in the cellular uptake of HBV, while presumably intracellular NTCP plays a critical role.
Nanotheranostics | 2017
Masaharu Somiya; Qiushi Liu; Shun'ichi Kuroda
Nanomedicines often involve the use of nanocarriers as a delivery system for drugs or genes for maximizing the therapeutic effect and/or minimizing the adverse effect. From drug administration to therapeutic activity, nanocarriers must evade the hosts immune system, specifically and efficiently target and enter the cell, and release their payload into the cell cytoplasm by endosomal escape. These processes constitute the early infection stage of viruses. Viruses are a powerful natural nanomaterial for the efficient delivery of genetic information by sophisticated mechanisms. Over the past two decades, many virus-inspired nanocarriers have been generated to permit successful drug and gene delivery. In this review, we summarize the early infection machineries of viruses, of which the part has so far been utilized for delivery systems. Furthermore, we describe basics and applications of the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infection machineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity).
World Journal of Gastroenterology | 2016
Qiushi Liu; Masaharu Somiya; Shun'ichi Kuroda
Currently, hepatitis B virus (HBV), upon attaching to human hepatocytes, is considered to interact first with heparan sulfate proteoglycan (HSPG) via an antigenic loop of HBV envelope S protein. Then, it is promptly transferred to the sodium taurocholate cotransporting polypeptide (NTCP) via the myristoylated N-terminal sequence of pre-S1 region (from Gly-2 to Gly-48, HBV genotype D), and it finally enters the cell by endocytosis. However, it is not clear how HSPG passes HBV to NTCP and how NTCP contributes to the cellular entry of HBV. Owing to the poor availability and the difficulty of manipulations, including fluorophore encapsulation, it has been nearly impossible to perform biochemical and cytochemical analyses using a substantial amount of HBV. A bio-nanocapsule (BNC), which is a hollow nanoparticle consisting of HBV envelope L protein, was efficiently synthesized in Saccharomyces cerevisiae. Since BNC could encapsulate payloads (drugs, genes, proteins) and specifically enter human hepatic cells utilizing HBV-derived infection machinery, it could be used as a model of HBV infection to elucidate the early infection machinery. Recently, it was demonstrated that the N-terminal sequence of pre-S1 region (from Asn-9 to Gly-24) possesses low pH-dependent fusogenic activity, which might play a crucial role in the endosomal escape of BNC payloads and in the uncoating process of HBV. In this minireview, we describe a model in which each domain of the HBV L protein contributes to attachment onto human hepatic cells through HSPG, initiation of endocytosis, interaction with NTCP in endosomes, and consequent provocation of membrane fusion followed by endosomal escape.
Nanomedicine: Nanotechnology, Biology and Medicine | 2018
Joohee Jung; Masaharu Somiya; Seong-Yun Jeong; Eun Kyung Choi; Shun'ichi Kuroda
Bio-nanocapsules (BNCs) consisting of hepatitis B virus surface antigen (HBsAg) L proteins and phospholipids are used as efficient non-viral carriers for liver-specific delivery of genes and drugs. Considering the administration to HB vaccinees and HB patients, endogenous anti-HBsAg immunoglobulins (HBIGs) may reduce the delivery efficacy and prevent repetitive administration. Therefore, low immunogenic BNCs were generated by inserting two point mutations in the HBsAg L protein, which were found in HBV escape mutants. Escape mutant-type BNC (emBNC) showed 50% lower HBIG binding capacity than that of parental BNC (wtBNC). It induced HBIG production to a lesser extent than that associated with wtBNC in BALB/c mice. The emBNC could accumulate into human hepatocyte-derived tumor in mice pre-treated with HBIGs. The complex of emBNC and cationic liposomes could deliver plasmid DNA to HepG2 cells efficiently in the presence of HBIGs. Thus, emBNC could evade HBIG-neutralizing antibodies, expanding the clinical utility of BNC-based nanomedicine.
Journal of Nanobiotechnology | 2018
Hidenori Matsuo; Masaharu Somiya; Masumi Iijima; Takeshi Arakawa; Shun'ichi Kuroda
BackgroundVarious nanocarriers have been used to deliver subunit vaccines specifically to dendritic cells (DCs) for the improvement of immunogenicity. However, due to their insufficient DC priming ability, these vaccines could not elicit effective innate immunity. We have recently developed a DC-targeting bio-nanocapsule (BNC) by displaying anti-CD11c IgGs via protein A-derived IgG Fc-binding Z domain on the hepatitis B virus envelope L protein particles (α-DC-ZZ-BNC).ResultsAfter the chemical modification with antigens (Ags), the α-DC-ZZ-BNC-Ag complex could deliver Ags to DCs efficiently, leading to effective DC maturation and efficient endosomal escape of Ags, followed by Ag-specific T cell responses and IgG productions. Moreover, the α-DC-ZZ-BNC modified with Japanese encephalitis virus (JEV) envelope-derived D3 Ags could confer protection against 50-fold lethal dose of JEV injection on mice.ConclusionThe α-DC-ZZ-BNC-Ag platform was shown to induce humoral and cellular immunities effectively without any adjuvant.