Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahide Tone is active.

Publication


Featured researches published by Masahide Tone.


Nature Immunology | 2008

Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer.

Yukiko Tone; Yoshitsugu Kojima; Mark L. Tykocinski; Mark I. Greene; Masahide Tone

The transcription factor Foxp3 is involved in the differentiation, function and survival of CD4+CD25+ regulatory T (Treg) cells. Details of the mechanism underlying the induction of Foxp3 expression remain unknown, because studies of the transcriptional regulation of the Foxp3 gene are limited by the small number of Treg cells in mononuclear cell populations. Here we have generated a model system for analyzing Foxp3 induction and, by using this system with primary T cells, we have identified an enhancer element in this gene. The transcription factors Smad3 and NFAT are required for activity of this Foxp3 enhancer, and both factors are essential for histone acetylation in the enhancer region and induction of Foxp3. These biochemical properties that define Foxp3 expression explain many of the effects of transforming growth factor-β on the function of Foxp3+ Treg cells.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells

Masahide Tone; Yukiko Tone; Elizabeth Adams; Stephen F. Yates; Mark Frewin; Stephen P. Cobbold; Herman Waldmann

Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for mouse GITR ligand and have confirmed that its interaction with GITR reverses suppression by CD4+CD25+ T cells. It also, however, provides a costimulatory signal for the antigen-driven proliferation of naïve T cells and polarized T helper 1 and T helper 2 clones. RT-PCR and mAb staining revealed mouse GITR ligand expression in dendritic cells, macrophages, and B cells. Expression was controlled by the transcription factor NF-1 and potentially by alternative splicing of mRNA destabilization sequences.


Immunity | 2009

Development of Foxp3+ Regulatory T Cells Is Driven by the c-Rel Enhanceosome

Qingguo Ruan; Vasumathi Kameswaran; Yukiko Tone; Li Li; Hsiou-Chi Liou; Mark I. Greene; Masahide Tone; Youhai H. Chen

Regulatory T (Treg) cells are essential for maintaining immune homeostasis. Although Foxp3 expression marks the commitment of progenitors to Treg cell lineage, how Treg cells are generated during lymphocyte development remains enigmatic. We report here that the c-Rel transcription factor controlled development of Treg cells by promoting the formation of a Foxp3-specific enhanceosome. This enhanceosome contained c-Rel, p65, NFAT, Smad, and CREB. Although Smad and CREB first bound to Foxp3 enhancers, they later moved to the promoter to form the c-Rel enhanceosome. c-Rel-deficient mice had up to 90% reductions of Treg cells compared to wild-type mice, and c-Rel-deficient T cells were compromised in Treg cell differentiation. Thus, Treg cell development is controlled by a c-Rel enhanceosome, and strategies targeting Rel-NF-kappaB can be effective for manipulating Treg cell function.


Journal of Immunology | 2000

IL-10 Gene Expression Is Controlled by the Transcription Factors Sp1 and Sp3

Masahide Tone; Mark J. Powell; Yukiko Tone; Sara A. J. Thompson; Herman Waldmann

IL-10 is an 18-kDa cytokine with a key role in homeostatic control of inflammatory and immune responses. We have investigated how transcription of the IL-10 gene is regulated, so as to be able to understand the circumstances of IL-10 expression in both health and disease. In the mouse, IL-10 gene expression is regulated by a TATA-type promoter with a critical cis-acting element containing GGA repeats located at −89 to −77. Its complementary sequence is similar to the cis-acting elements (TCC repeats) in the promoters of genes encoding epidermal growth factor receptor and CD58. All these elements comprise a common CCTCCT sequence with less conserved C + T-rich sequences. Eliminating this CCTCCT sequence results in a marked reduction in promoter activity, suggesting a necessary role in IL-10 gene expression. Despite its dissimilarity to the G + C-rich Sp1 consensus sequence (GC box), Sp1 and Sp3 transcription factors could be shown to bind to this motif. The requirement for Sp1 and Sp3 in transcription of IL-10 was confirmed using Drosophila SL2 cells, which lack endogenous Sp factors. These results suggest that the transcription of IL-10 is positively regulated by both Sp1 and Sp3.


Journal of Immunology | 2005

Adenosine Augments IL-10 Production by Macrophages through an A2B Receptor-Mediated Posttranscriptional Mechanism

Zoltán H. Németh; Carol S. Lutz; Balázs Csóka; Edwin A. Deitch; S. Joseph Leibovich; William C. Gause; Masahide Tone; Pál Pacher; E. Sylvester Vizi; György Haskó

Adenosine receptor ligands have anti-inflammatory effects and modulate immune responses by up-regulating IL-10 production by immunostimulated macrophages. The adenosine receptor family comprises G protein-coupled heptahelical transmembrane receptors classified into four types: A1, A2A, A2B, and A3. Our understanding of the signaling mechanisms leading to enhanced IL-10 production following adenosine receptor occupancy on macrophages is limited. In this study, we demonstrate that adenosine receptor occupancy increases IL-10 production by LPS-stimulated macrophages without affecting IL-10 promoter activity and IL-10 mRNA levels, indicating a posttranscriptional mechanism. Transfection experiments with reporter constructs containing sequences corresponding to the AU-rich 3′-untranslated region (UTR) of IL-10 mRNA confirmed that adenosine receptor activation acts by relieving the translational repressive effect of the IL-10 3′-UTR. By contrast, adenosine receptor activation failed to liberate the translational arrest conferred by the 3′-UTR of TNF-α mRNA. The IL-10 3′-UTR formed specific complexes with proteins present in cytoplasmic extracts of RAW 264.7 cells. Adenosine enhanced binding of proteins to a region of the IL-10 3′-UTR containing the GUAUUUAUU nonamer. The stimulatory effect of adenosine on IL-10 production was mediated through the A2B receptor, because the order of potency of selective agonists was 5′-N-ethylcarboxamidoadenosine (NECA) > N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) > 2-chloro-N6-cyclopentyladenosine (CCPA) = 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethyl-carboxamidoadenosine (CGS-21680). Also, the selective A2B antagonist, alloxazine, prevented the effect of adenosine. Collectively, these studies identify a novel pathway in which activation of a G protein-coupled receptor augments translation of an anti-inflammatory gene.


Journal of Immunology | 2000

Posttranscriptional regulation of IL-10 gene expression through sequences in the 3′-untranslated region.

Mark J. Powell; Sara A. J. Thompson; Yukiko Tone; Herman Waldmann; Masahide Tone

IL-10 is an 18-kDa immunoregulatory cytokine the transcription of which is controlled by the ubiquitously expressed transcription factors Sp1 and Sp3. Although many cell types express IL-10 mRNA, not all make detectable amounts of protein, and levels of protein expression vary enormously. We show here that much of this variation can be accounted for by posttranscriptional mechanisms. Multiple copies of potential mRNA destabilizing motifs AUUUA and related sequences can be found to the 3′-untranslated region (UTR) of IL-10 mRNA distributed through three potential regulatory regions. Evidence of RNA-destabilizing activities in all three regions was deduced from luciferase reporter assays. The half-life of RNA containing the 3′-UTR of IL-10 mRNA was quite short in both nonstimulated (t1/2 = 1 h), and PMA-stimulated EL-4 cell (t1/2 = 3 h). In contrast, the half-life of RNA lacking the 3′-UTR was much longer (t1/2 = >12 h) whether cells were stimulated or not. This suggests that many cells are poised to secrete IL-10 and will do so if they receive appropriate posttranscriptional signals.


Current Biology | 2000

Directed differentiation of dendritic cells from mouse embryonic stem cells

Paul J. Fairchild; Frances A. Brook; Richard L. Gardner; Luis Graca; V Strong; Yukiko Tone; Masahide Tone; Kathleen F. Nolan; Herman Waldmann

Dendritic cells (DCs) are uniquely capable of presenting antigen to naive T cells, either eliciting immunity [1] or ensuring self-tolerance [2]. This property identifies DCs as potential candidates for enhancing responses to foreign [3] and tumour antigens [4], and as targets for immune intervention in the treatment of autoimmunity and allograft rejection [1]. Realisation of their therapeutic potential would be greatly facilitated by a fuller understanding of the function of DC-specific genes, a goal that has frequently proven elusive because of the paucity of stable lines of DCs that retain their unique properties, and the inherent resistance of primary DCs to genetic modification. Protocols for the genetic manipulation of embryonic stem (ES) cells are, by contrast, well established [5], as is their capacity to differentiate into a wide variety of cell types in vitro, including many of hematopoietic origin [6]. Here, we report the establishment, from mouse ES cells, of long-term cultures of immature DCs that share many characteristics with macrophages, but acquire, upon maturation, the allostimulatory capacity and surface phenotype of classical DCs, including expression of CD11c, major histocompatibility complex (MHC) class II and co-stimulatory molecules. This novel source should prove valuable for the generation of primary, untransformed DCs in which candidate genes have been overexpressed or functionally ablated, while providing insights into the earliest stages of DC ontogeny.


The International Journal of Neuropsychopharmacology | 2012

Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease.

Chia-Hsiung Chen; Weihui Zhou; Shengchun Liu; Yu Deng; Fang Cai; Masahide Tone; Yukiko Tone; Yigang Tong; Weihong Song

Elevated levels of β-site APP cleaving enzyme 1 (BACE1) were found in the brain of some sporadic Alzheimers disease (AD) patients; however, the underlying mechanism is unknown. BACE1 cleaves β-amyloid precursor protein (APP) to generate amyloid β protein (Aβ), a central component of neuritic plaques in AD brains. Nuclear factor-kappa B (NF-κB) signalling plays an important role in gene regulation and is implicated in inflammation, oxidative stress and apoptosis. In this report we found that both BACE1 and NF-κB p65 levels were significantly increased in the brains of AD patients. Two functional NF-κB-binding elements were identified in the human BACE1 promoter region. We found that NF-κB p65 expression resulted in increased BACE1 promoter activity and BACE1 transcription, while disruption of NF-κB p65 decreased BACE1 gene expression in p65 knockout (RelA-knockout) cells. In addition, NF-κB p65 expression leads to up-regulated β-secretase cleavage and Aβ production, while non-steroidal anti-inflammatory drugs (NSAIDs) inhibited BACE1 transcriptional activation induced by strong NF-κB activator tumour necrosis factor-alpha (TNF-α). Taken together, our results clearly demonstrate that NF-κB signalling facilitates BACE1 gene expression and APP processing, and increased BACE1 expression mediated by NF-κB signalling in the brain could be one of the novel molecular mechanisms underlying the development of AD in some sporadic cases. Furthermore, NSAIDs could block the inflammation-induced BACE1 transcription and Aβ production. Our study suggests that inhibition of NF-κB-mediated BACE1 expression may be a valuable drug target for AD therapy.


Journal of Virology | 2005

In Vivo Kinetics of GITR and GITR Ligand Expression and Their Functional Significance in Regulating Viral Immunopathology

Susmit Suvas; Bumseok Kim; Pranita P. Sarangi; Masahide Tone; Herman Waldmann; Barry T. Rouse

ABSTRACT This report evaluates the role of interaction between glucocorticoid-induced tumor necrosis factor receptor (GITR) and GITR ligand (GITR-L) in the immunoinflammatory response to infection with herpes simplex virus (HSV). Both GITR and GITR-L were transiently upregulated after ocular HSV infection, on antigen-specific T cells and antigen-presenting cells, respectively, in the draining lymph node (DLN). In addition, virus-specific T-cell responses in the DLN and spleen were enhanced by anti-GITR antibody treatment, an outcome expected to result in more severe inflammatory lesions. Intriguingly, the treatment resulted in significantly diminished T-cell-mediated ocular lesions. The explanation for these findings was that anti-GITR antibody treatment caused a reduced production of ocular MMP-9, a molecule involved in ocular angiogenesis, an essential step in the pathogenesis of herpetic keratitis. Our results are the first observations to determine in vivo kinetics of GITR and GITR-L expression after virus infection, and they emphasize the role of GITR-GITR-L interaction to regulate virus-induced immunoinflammatory lesions.


Journal of Immunology | 2005

Enhanced Production of IL-10 by Dendritic Cells Deficient in CIITA

Christina S.K. Yee; Yongxue Yao; Qi Xu; Brian P. McCarthy; Deqin Sun-Lin; Masahide Tone; Herman Waldmann; Cheong Hee Chang

Dendritic cells (DC) are professional APCs that play a critical role in regulating immunity. In DC, maturation-induced changes in MHC class II expression and Ag presentation require transcriptional regulation by CIITA. To study the role of CIITA in DC, we evaluated key cell functions in DC from CIITA-deficient (CIITA−/−) mice. The ability to take up Ag, measured by fluid phase endocytosis, was comparable between CIITA−/− and control DC. Although CIITA−/− DC lack MHC class II, they maintained normal expression of costimulatory molecules CD80, CD86, and CD40. In contrast, CIITA−/− DC activated with LPS or CpG expressed increased IL-10 levels, but normal levels of TNF-α and IL-12 relative to control. Enhanced IL-10 was due to greater IL-10 mRNA in CIITA−/− DC. Aβ−/− DC, which lack MHC class II but express CIITA normally, had exhibited no difference in IL-10 compared with control. When CIITA was cotransfected with an IL-10 promoter-reporter into a mouse monocyte cell line, RAW 264.7, IL-10 promoter activity was decreased. In addition, reintroducing CIITA into CIITA−/− DC reduced production of IL-10. In all, these data suggest that CIITA negatively regulates expression of IL-10, and that CIITA may direct DC function in ways that extend beyond control of MHC class II.

Collaboration


Dive into the Masahide Tone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Walsh

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark I. Greene

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge