Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiko Furutani is active.

Publication


Featured researches published by Masahiko Furutani.


Development | 2004

PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis

Masahiko Furutani; Teva Vernoux; Jan Traas; Takehide Kato; Masao Tasaka; Mitsuhiro Aida

In dicotyledonous plants, two cotyledons are formed at bilaterally symmetric positions in the apical region of the embryo. Single mutations in the PIN-FORMED1 (PIN1) and PINOID (PID) genes, which mediate auxin-dependent organ formation, moderately disrupt the symmetric patterning of cotyledons. We report that the pin1 pid double mutant displays a striking phenotype that completely lacks cotyledons and bilateral symmetry. In the double mutant embryo, the expression domains of CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and SHOOT MERISTEMLESS (STM), the functions of which are normally required to repress growth at cotyledon boundaries, expand to the periphery and overlap with a cotyledon-specific marker, FILAMENTOUS FLOWER. Elimination of CUC1, CUC2 or STM activity leads to recovery of cotyledon growth in the double mutant, suggesting that the negative regulation of these boundary genes by PIN1 and PID is sufficient for primordium growth. We also show that PID mRNA is localized mainly to the boundaries of cotyledon primordia and early expression of PID mRNA is dependent on PIN1. Our results demonstrate the redundant roles of PIN1 and PID in the establishment of bilateral symmetry, as well as in the promotion of cotyledon outgrowth, the latter of which involves the negative regulation of CUC1, CUC2 and STM genes, which are boundary-specific downstream effectors.


Development | 2007

The gene MACCHI-BOU 4/ENHANCER OF PINOID encodes a NPH3-like protein and reveals similarities between organogenesis and phototropism at the molecular level

Masahiko Furutani; Takahito Kajiwara; Takehide Kato; Birgit S. Treml; Christine Stockum; Ramon A. Torres-Ruiz; Masao Tasaka

Intercellular transport of the phytohormone auxin is a significant factor for plant organogenesis. To investigate molecular mechanisms by which auxin controls organogenesis, we analyzed the macchi-bou 4 (mab4) mutant identified as an enhancer of pinoid (pid). Although mab4 and pid single mutants displayed relatively mild cotyledon phenotypes, pid mab4 double mutants completely lacked cotyledons. We found that MAB4 was identical to ENHANCER OF PINOID (ENP), which has been suggested to control PIN1 polarity in cotyledon primordia. MAB4/ENP encodes a novel protein, which belongs to the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) family thought to function as a signal transducer in phototropism and control lateral translocation of auxin. MAB4/ENP mRNA was detected in the protodermal cell layer of the embryo and the meristem L1 layer at the site of organ initiation. In the mab4 embryo, the abundance of PIN1:GFP was severely decreased at the plasma membrane in the protodermal cell layer. In addition, subcellular localization analyses indicated that MAB4/ENP resides on a subpopulation of endosomes as well as on unidentified intracellular compartments. These results indicate that MAB4/ENP is involved in polar auxin transport in organogenesis.


The Plant Cell | 2007

TCP Transcription Factors Control the Morphology of Shoot Lateral Organs via Negative Regulation of the Expression of Boundary-Specific Genes in Arabidopsis

Tomotsugu Koyama; Masahiko Furutani; Masao Tasaka; Masaru Ohme-Takagi

Plants form shoot meristems in the so-called boundary region, and these meristems are necessary for normal morphogenesis of aerial parts of plants. However, the molecular mechanisms that regulate the formation of shoot meristems are not fully understood. We report here that expression of a chimeric repressor from TCP3 (TCP3SRDX), a member of TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) transcription factors in Arabidopsis thaliana, resulted in the formation of ectopic shoots on cotyledons and various defects in organ development. Expression of TCP3SRDX induced ectopic expression of boundary-specific genes, namely the CUP-SHAPED COTYLEDON (CUC) genes, and suppressed the expression of miR164, whose product cleaves the transcripts of CUC genes. This abnormal phenotype was substantially reversed on the cuc1 mutant background. By contrast, gain of function of TCP3 suppressed the expression of CUC genes and resulted in the fusion of cotyledons and defects in formation of shoots. The pattern of expression of TCP3 did not overlap with that of the CUC genes. In addition, we found that eight TCPs had functions similar to that of TCP3. Our results demonstrate that the TCP transcription factors play a pivotal role in the control of morphogenesis of shoot organs by negatively regulating the expression of boundary-specific genes.


The Plant Cell | 2006

Arabidopsis CUP-SHAPED COTYLEDON3 Regulates Postembryonic Shoot Meristem and Organ Boundary Formation

Ken-ichiro Hibara; Md. Rezaul Karim; Shinobu Takada; Ken-ichiro Taoka; Masahiko Furutani; Mitsuhiro Aida; Masao Tasaka

Overall shoot architecture in higher plants is highly dependent on the activity of embryonic and axillary shoot meristems, which are produced from the basal adaxial boundaries of cotyledons and leaves, respectively. In Arabidopsis thaliana, redundant functions of the CUP-SHAPED COTYLEDON genes CUC1, CUC2, and CUC3 regulate embryonic shoot meristem formation and cotyledon boundary specification. Their functional importance and relationship in postembryonic development, however, is poorly understood. Here, we performed extensive analyses of the embryonic and postembryonic functions of the three CUC genes using multiple combinations of newly isolated mutant alleles. We found significant roles of CUC2 and CUC3, but not CUC1, in axillary meristem formation and boundary specification of various postembryonic shoot organs, such as leaves, stems, and pedicels. In embryogenesis, all three genes make significant contributions, although CUC3 appears to possess, at least partially, a distinct function from that of CUC1 and CUC2. The function of CUC3 and CUC2 overlaps that of LATERAL SUPPRESSOR, which was previously shown to be required for axillary meristem formation. Our results reveal that redundant but partially distinct functions of CUC1, CUC2, and CUC3 are responsible for shoot organ boundary and meristem formation throughout the life cycle in Arabidopsis.


Development | 2011

Polar-localized NPH3-like proteins regulate polarity and endocytosis of PIN-FORMED auxin efflux carriers

Masahiko Furutani; Norihito Sakamoto; Shuhei Yoshida; Takahito Kajiwara; Hélène S. Robert; Jiří Friml; Masao Tasaka

PIN-FORMED (PIN)-dependent auxin transport is essential for plant development and its modulation in response to the environment or endogenous signals. A NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)-like protein, MACCHI-BOU 4 (MAB4), has been shown to control PIN1 localization during organ formation, but its contribution is limited. The Arabidopsis genome contains four genes, MAB4/ENP/NPY1-LIKE1 (MEL1), MEL2, MEL3 and MEL4, highly homologous to MAB4. Genetic analysis disclosed functional redundancy between MAB4 and MEL genes in regulation of not only organ formation but also of root gravitropism, revealing that NPH3 family proteins have a wider range of functions than previously suspected. Multiple mutants showed severe reduction in PIN abundance and PIN polar localization, leading to defective expression of an auxin responsive marker DR5rev::GFP. Pharmacological analyses and fluorescence recovery after photo-bleaching experiments showed that mel mutations increase PIN2 internalization from the plasma membrane, but affect neither intracellular PIN2 trafficking nor PIN2 lateral diffusion at the plasma membrane. Notably, all MAB4 subfamily proteins show polar localization at the cell periphery in plants. The MAB4 polarity was almost identical to PIN polarity. Our results suggest that the MAB4 subfamily proteins specifically retain PIN proteins in a polarized manner at the plasma membrane, thus controlling directional auxin transport and plant development.


Journal of Biological Chemistry | 2011

Alkoxy-auxins Are Selective Inhibitors of Auxin Transport Mediated by PIN, ABCB, and AUX1 Transporters

Etsuko Tsuda; Haibing Yang; Takeshi Nishimura; Yukiko Uehara; Tatsuya Sakai; Masahiko Furutani; Tomokazu Koshiba; Masakazu Hirose; Hiroshi Nozaki; Angus S. Murphy; Ken-ichiro Hayashi

Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCFTIR1 auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.


Plant and Cell Physiology | 2011

MACCHI-BOU 2 is Required for Early Embryo Patterning and Cotyledon Organogenesis in Arabidopsis

Jun Ito; Takako Sono; Masao Tasaka; Masahiko Furutani

The phytohormone auxin is a key regulator of organogenesis in plants and is distributed asymmetrically via polar transport. However, the precise mechanisms underlying auxin-mediated organogenesis remain elusive. Here, we have analyzed the macchi-bou 2 (mab2) mutant identified in a pinoid (pid) enhancer mutant screen. Seedlings homozygous for either mab2 or pid showed only mild phenotypic effects on cotyledon positions and/or numbers. In contrast, mab2 pid double mutant seedlings completely lacked cotyledons, indicating a synergistic interaction. We found that mab2 homozygous embryos had defective patterns of cell division and showed aberrant cotyledon organogenesis. Further analysis revealed that the mab2 mutation affected auxin response but not auxin transport in the embryos, suggesting the involvement of MAB2 in auxin response during embryogenesis. MAB2 encodes an Arabidopsis ortholog of MED13, a putative regulatory module component of the Mediator complex. Mediator is a multicomponent complex that is evolutionarily conserved in eukaryotes and its regulatory module associates with Mediator to control the interaction of Mediator and RNA polymerase II. MAB2 interacts with a regulatory module component in yeast cells. Taken together, our data suggest that MAB2 plays a crucial role in embryo patterning and cotyledon organogenesis, possibly through modulating expression of specific genes such as auxin-responsive genes.


Frontiers in Plant Science | 2014

The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development

Yuri Kamiuchi; Kayo Yamamoto; Masahiko Furutani; Masao Tasaka; Mitsuhiro Aida

Carpel margin meristems (CMMs), a pair of meristematic tissues present along the margins of two fused carpel primordia of Arabidopsis thaliana, are essential for the formation of ovules and the septum, two major internal structures of the gynoecium. Although a number of regulatory factors involved in shoot meristem activity are known to be required for the formation of these gynoecial structures, their direct roles in CMM development have yet to be addressed. Here we show that the CUP-SHAPED COTYLEDON genes CUC1 and CUC2, which are essential for shoot meristem initiation, are also required for formation and stable positioning of the CMMs. Early in CMM formation, CUC1 and CUC2 are also required for expression of the SHOOT MERISTEMLESS gene, a central regulator for stem cell maintenance in the shoot meristem. Moreover, plants carrying miR164-resistant forms of CUC1 and CUC2 resulted in extra CMM activity with altered positioning. Our results thus demonstrate that the two regulatory proteins controlling shoot meristem activity also play critical roles in elaboration of the female reproductive organ through the control of meristematic activity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Auxin transport sites are visualized in planta using fluorescent auxin analogs

Ken-ichiro Hayashi; Shouichi Nakamura; Shiho Fukunaga; Takeshi Nishimura; Mark K. Jenness; Angus S. Murphy; Hiroyasu Motose; Hiroshi Nozaki; Masahiko Furutani; Takashi Aoyama

Significance Fluorescent auxin analogs are designed to function as active auxins for the auxin transport system but to be inactive for auxin signaling. These fluorescent auxin analogs can mimic auxin via the transport system and be used to visualize inter- and intracellular auxin distribution in roots. These analogs allow imaging of auxin transport sites with high spatiotemporal resolution. Our fluorescent auxin system provides insight into auxin transport dynamics and subcellular auxin distribution. The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.


Plant and Cell Physiology | 2012

CRYPTIC PRECOCIOUS/MED12 is a Novel Flowering Regulator with Multiple Target Steps in Arabidopsis

Yuri Imura; Yasushi Kobayashi; Sumiko Yamamoto; Masahiko Furutani; Masao Tasaka; Mitsutomo Abe; Takashi Araki

The proper timing of flowering is of crucial importance for reproductive success of plants. Regulation of flowering is orchestrated by inputs from both environmental and endogenous signals such as daylength, light quality, temperature and hormones, and key flowering regulators construct several parallel and interactive genetic pathways. This integrative regulatory network has been proposed to create robustness as well as plasticity of the regulation. Although knowledge of key genes and their regulation has been accumulated, there still remains much to learn about how they are organized into an integrative regulatory network. Here, we have analyzed the CRYPTIC PRECOCIOUS (CRP) gene for the Arabidopsis counterpart of the MED12 subunit of the Mediator. A novel dominant mutant, crp-1D, which causes up-regulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FRUITFULL (FUL) and APETALA1 (AP1) expression in a FLOWERING LOCUS T (FT)-dependent manner, was identified in an enhancer screen of the early-flowering phenotype of 35S::FT. Genetic and molecular analysis of both crp-1D and crp loss-of-function alleles showed that MED12/CRP is required not only for proper regulation of SOC1, FUL and AP1, but also for up-regulation of FT, TWIN SISTER OF FT (TSF) and FD, and down-regulation of FLOWERING LOCUS C (FLC). These observations suggest that MED12/CRP is a novel flowering regulator with multiple regulatory target steps both upstream and downstream of the key flowering regulators including FT florigen. Our work, taken together with recent studies of other Mediator subunit genes, supports an emerging view that the Mediator plays multiple roles in the regulation of flowering.

Collaboration


Dive into the Masahiko Furutani's collaboration.

Top Co-Authors

Avatar

Masao Tasaka

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mitsuhiro Aida

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takahito Kajiwara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takeshi Nishimura

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Nozaki

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar

Jun Ito

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ken-ichiro Hayashi

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar

Ken-ichiro Hibara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takehide Kato

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge