Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeshi Nishimura is active.

Publication


Featured researches published by Takeshi Nishimura.


Molecular Genetics and Genomics | 2008

NARROW LEAF 7 controls leaf shape mediated by auxin in rice

Kenji Fujino; Yasuyuki Matsuda; Kenjirou Ozawa; Takeshi Nishimura; Tomokazu Koshiba; Marco W. Fraaije; Hiroshi Sekiguchi

Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant decrease in the width of the leaf blade, termed narrow leaf 7 (nal7). This spontaneous mutation of nal7 occurred during the process of developing advanced backcrossed progeny derived from crosses of rice varieties with wild type leaf phenotype. While the mutation resulted in reduced leaf width, no significant morphological changes at the cellular level in leaves were observed, except in bulliform cells. The NAL7 locus encodes a flavin-containing monooxygenase, which displays sequence homology with YUCCA. Inspection of a structural model of NAL7 suggests that the mutation results in an inactive enzyme. The IAA content in the nal7 mutant was altered compared with that of wild type. The nal7 mutant overexpressing NAL7 cDNA exhibited overgrowth and abnormal morphology of the root, which was likely to be due to auxin overproduction. These results indicate that NAL7 is involved in auxin biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars

Daisuke Fujita; Kurniawan Rudi Trijatmiko; Analiza G. Tagle; Maria Veronica Sapasap; Yohei Koide; Kazuhiro Sasaki; Nikolaos Tsakirpaloglou; Ritchel B. Gannaban; Takeshi Nishimura; Seiji Yanagihara; Yoshimichi Fukuta; Tomokazu Koshiba; Inez H. Slamet-Loedin; Tsutomu Ishimaru; Nobuya Kobayashi

Significance This work reports discovery of a unique gene important for rice agriculture. A significant yield enhancement in rice modern cultivar was achieved by identification of a gene, SPIKELET NUMBER (SPIKE) in Indonesian rice landrace. The SPIKE increased grain yield of an indica cultivar IR64, which is widely grown in the tropics, over four seasons at the field level and improved plant architecture without changing grain quality or growth period, which are important for regional adaptability. These results indicate finding of SPIKE will be extremely valuable for contributing to increase grain production of indica rice cultivars. Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13–36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.


Plant Journal | 2014

Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis

Takeshi Nishimura; Ken-ichiro Hayashi; Hiromi Suzuki; Atsuko Gyohda; Chihiro Takaoka; Yusuke Sakaguchi; Sachiko Matsumoto; Hiroyuki Kasahara; Tatsuya Sakai; Jun-ichi Kato; Yuji Kamiya; Tomokazu Koshiba

Indole-3-acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole-3-pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5-(4-chlorophenyl)-4H-1,2,4-triazole-3-thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC-expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1-His suggested that yucasin strongly inhibited YUC1-His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over-expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss-of-function mutant of TAA1, sav3-2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l-kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin-treated sav3-2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.


Plant and Cell Physiology | 2011

RSOsPR10 Expression in Response to Environmental Stresses is Regulated Antagonistically by Jasmonate/Ethylene and Salicylic Acid Signaling Pathways in Rice Roots

Kaoru Takeuchi; Atsuko Gyohda; Makiko Tominaga; Madoka Kawakatsu; Atsushi Hatakeyama; Noriko Ishii; Kentaroh Shimaya; Takeshi Nishimura; Michael Riemann; Peter Nick; Makoto Hashimoto; Teruya Komano; Akira Endo; Takashi Okamoto; Yusuke Jikumaru; Yuji Kamiya; Teruhiko Terakawa; Tomokazu Koshiba

Plant roots play important roles not only in the absorption of water and nutrients, but also in stress tolerance. Previously, we identified RSOsPR10 as a root-specific pathogenesis-related (PR) protein induced by drought and salt treatments in rice. Transcripts and proteins of RSOsPR10 were strongly induced by jasmonate (JA) and the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC), while salicylic acid (SA) almost completely suppressed these inductions. Immunohistochemical analyses showed that RSOsPR10 strongly accumulated in cortex cells surrounding the vascular system of roots, and this accumulation was also suppressed when SA was applied simultaneously with stress or hormone treatments. In the JA-deficient mutant hebiba, RSOsPR10 expression was up-regulated by NaCl, wounding, drought and exogenous application of JA. This suggested the involvement of a signal transduction pathway that integrates JA and ET signals in plant defense responses. Expression of OsERF1, a transcription factor in the JA/ET pathway, was induced earlier than that of RSOsPR10 after salt, JA and ACC treatments. Simultaneous SA treatment strongly inhibited the induction of RSOsPR10 expression and, to a lesser extent, induction of OsERF1 expression. These results suggest that JA/ET and SA pathways function in the stress-responsive induction of RSOsPR10, and that OsERF1 may be one of the transcriptional factors in the JA/ET pathway.


Plant and Cell Physiology | 2009

Differential Downward Stream of Auxin Synthesized at the Tip Has a Key Role in Gravitropic Curvature via TIR1/AFBs-Mediated Auxin Signaling Pathways

Takeshi Nishimura; Hitomi Nakano; Ken-ichiro Hayashi; Chiharu Niwa; Tomokazu Koshiba

Since the early days of Darwin, monocot coleoptiles have been used to investigate indole-3-acetic acid (IAA) production, polar transport and tropisms. Here, using maize coleoptiles, we first showed that polar transport of IAA synthesized at the tip region is regulated by ZmPIN(s). Then, the TIR/AFBs-mediated auxin signaling pathway corresponds to the asymmetric IAA flow after gravi-stimulus, which results in tropic curvature. When [(13)C(11)(15)N(2)]Trp was applied to coleoptile tips, substantial amounts of the stable isotope were incorporated into IAA at the tip region, and the labeled IAA was transported in a polar manner at approximately 7 mm h(-1). Immunohistochemical analyses revealed that ZmPIN1(s) was present in almost all cells. ZmPIN1(s) showed a relatively non-polar distribution at the tip, but a basal cellular localization at lower regions. Application of the IAA transport inhibitors 1-N-naphthylphthalamic acid (NPA) and brefeldin A (BFA) at the very tip region almost completely inhibited IAA movement from the tip. These inhibitors also severely suppressed gravitropic bending. PEO-IAA, an auxin antagonist that binds to TIR1/AFBs, suppressed not only the expression of an auxin-responsive ZmSAUR2 gene, but also gravitropic curvature. Expression of ZmSAUR2 was up-regulated on the lower side and down-regulated on the upper side of the coleoptile elongation zone, corresponding to the asymmetric IAA distribution. These results indicate that the asymmetric downward streams of IAA control the differential growth rate of the cells by attenuating TIR1/AFBs-mediated auxin response genes, including ZmSAUR2, and therefore result in tropic curvature.


Plant Journal | 2009

A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos

Takashi Sazuka; Noriko Kamiya; Takeshi Nishimura; Kozue Ohmae; Yutaka Sato; Kohei Imamura; Yasuo Nagato; Tomokazu Koshiba; Yoshiaki Nagamura; Motoyuki Ashikari; Hidemi Kitano; Makoto Matsuoka

Indole-3-acetic acid (IAA) plays a critical role in many aspects of plant growth and development; however, complete pathways of biosynthesis, localization and many aspects of functions of IAA in rice remain unclear. Here, we report the analysis of a rice tryptophan- (Trp-) and IAA-deficient mutant, tryptophan deficient dwarf1 (tdd1), which is embryonic lethal because of a failure to develop most organs during embryogenesis. Regenerated tdd1 plants showed pleiotropic phenotypes: dwarfing, narrow leaves, short roots and abnormal flowers. TDD1 encodes a protein homologous to anthranilate synthase beta-subunit, which catalyses the first step of the Trp biosynthesis pathway and functions upstream of Trp-dependent IAA biosynthesis. TDD1-uidA and DR5-uidA expression overlapped at many sites in WT plants but was lacking in tdd1, indicating that TDD1 is involved in auxin biosynthesis. Both Trp and IAA levels in flowers and embryos were much lower in tdd1 than in wild type (WT). Trp feeding completely rescued the mutant phenotypes and moderate expression of OsYUCCA1, which encodes a key enzyme in Trp-dependent IAA biosynthesis, also rescued plant height and root length, indicating that the abnormal phenotypes of tdd1 are caused predominantly by Trp and IAA deficiency. In tdd1 embryos, the expression patterns of OSH1 and OsSCR, which mark the presumptive apical region and the L2 layer, respectively, are identical to those in WT, suggesting a possibility either that different IAA levels are required for basic pattern formation than for organ formation or that an orthologous gene compensates for TDD1 deficiency during pattern formation.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Auxin transport sites are visualized in planta using fluorescent auxin analogs

Ken-ichiro Hayashi; Shouichi Nakamura; Shiho Fukunaga; Takeshi Nishimura; Mark K. Jenness; Angus S. Murphy; Hiroyasu Motose; Hiroshi Nozaki; Masahiko Furutani; Takashi Aoyama

Significance Fluorescent auxin analogs are designed to function as active auxins for the auxin transport system but to be inactive for auxin signaling. These fluorescent auxin analogs can mimic auxin via the transport system and be used to visualize inter- and intracellular auxin distribution in roots. These analogs allow imaging of auxin transport sites with high spatiotemporal resolution. Our fluorescent auxin system provides insight into auxin transport dynamics and subcellular auxin distribution. The plant hormone auxin is a key morphogenetic signal that controls many aspects of plant growth and development. Cellular auxin levels are coordinately regulated by multiple processes, including auxin biosynthesis and the polar transport and metabolic pathways. The auxin concentration gradient determines plant organ positioning and growth responses to environmental cues. Auxin transport systems play crucial roles in the spatiotemporal regulation of the auxin gradient. This auxin gradient has been analyzed using SCF-type E3 ubiquitin-ligase complex-based auxin biosensors in synthetic auxin-responsive reporter lines. However, the contributions of auxin biosynthesis and metabolism to the auxin gradient have been largely elusive. Additionally, the available information on subcellular auxin localization is still limited. Here we designed fluorescently labeled auxin analogs that remain active for auxin transport but are inactive for auxin signaling and metabolism. Fluorescent auxin analogs enable the selective visualization of the distribution of auxin by the auxin transport system. Together with auxin biosynthesis inhibitors and an auxin biosensor, these analogs indicated a substantial contribution of local auxin biosynthesis to the formation of auxin maxima at the root apex. Moreover, fluorescent auxin analogs mainly localized to the endoplasmic reticulum in cultured cells and roots, implying the presence of a subcellular auxin gradient in the cells. Our work not only provides a useful tool for the plant chemical biology field but also demonstrates a new strategy for imaging the distribution of small-molecule hormones.


Planta | 2006

Red light causes a reduction in IAA levels at the apical tip by inhibiting de novo biosynthesis from tryptophan in maize coleoptiles

Takeshi Nishimura; Yukiko Mori; Toshiko Furukawa; Akeo Kadota; Tomokazu Koshiba

When maize coleoptiles were unilaterally exposed to red light (7.9xa0μmol m−2s−1 for 5xa0min), 3xa0h after treatment IAA levels in coleoptiles decreased in all regions, from top to basal, with levels about 60% of dark controls. Localized irradiation in the 5xa0mm top zone was sufficient to cause the same extent of IAA reduction in the tips to that in the tips of whole irradiated shoots. When coleoptiles were treated with N-1-naphthylphthalamic acid (NPA), an accumulation of IAA in the tip and a decrease of diffusible IAA from tips were simultaneously detected. IAA accumulation in red-light treated coleoptiles by NPA was much lower than that of dark controls. NPA treatment did not affect the content of conjugated IAA in either dark or light treated coleoptile tips. When 13C1115N2-tryptophan (Trp) was applied to the top of coleoptiles, substantial amounts of stable isotope were incorporated into free IAA in dark and red-light treated coleoptile tips. The ratio of incorporation was slightly lower in red-light treated coleoptile tips than that in dark controls. The label could not be detected in conjugated IAA. The rate of basipetal transport of IAA was about 10xa0mm h−1 and the velocity was not affected by red light. These results strongly suggest that red light does not affect the rates of conversion of free IAA to the conjugate form or of the basipetal transport, but just reduces the IAA level in the tips, probably inhibited by IAA biosynthesis from Trp in this region.


Plant Journal | 2014

The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes

Takanori Yoshikawa; Momoyo Ito; Tsuyoshi Sumikura; Akira Nakayama; Takeshi Nishimura; Hidemi Kitano; Isomaro Yamaguchi; Tomokazu Koshiba; Ken-ichiro Hibara; Yasuo Nagato; Jun-Ichi Itoh

Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.


Plant and Cell Physiology | 2012

Identification of IAA Transport Inhibitors Including Compounds Affecting Cellular PIN Trafficking by Two Chemical Screening Approaches Using Maize Coleoptile Systems

Takeshi Nishimura; Naoyuki Matano; Taichi Morishima; Chieko Kakinuma; Ken-ichiro Hayashi; Teruya Komano; Minoru Kubo; Mitsuyasu Hasebe; Hiroyuki Kasahara; Yuji Kamiya; Tomokazu Koshiba

The monocot coleoptile tip region has been generally supposed to be the source of IAA to supply IAA to basal parts by the polar IAA transport system, which results in gravi- and phototropic curvature of coleoptiles. Based on this IAA transport system and gravitropism of maize coleoptiles, we have developed two screening methods to identify small molecules from a large chemical library that inhibit IAA transport. The methods detect molecules that affect (i) gravitropic curvature of coleoptiles; and (ii) the amount of IAA transported from the tip. From 10,000 chemicals, eight compounds were identified and categorized into two groups. Four chemicals in group A decreased IAA transport from the tip, and increased endogenous IAA levels in the tip. The structures of two compounds resembled that of 1-N-naphthylphthalamic acid (NPA), but those of the other two differed from structures of known IAA transport inhibitors. Four chemicals in group B strongly inhibited IAA transport from the tip, but IAA levels at the tip were only slightly affected. At higher concentrations, group B compounds inhibited germination of Arabidopsis, similarly to brefeldin A (BFA). Analysis of the cellular distribution of PIN2-green fluorescent protein (GFP) and PIN1-GFP in Arabidopsis revealed that one of the four chemicals in group B induced internalization of PIN1 and PIN2 proteins into vesicles smaller than BFA bodies, suggesting that this compound affects cellular vesicle trafficking systems related to PIN trafficking. The eight chemicals identified here will be a useful tool for understanding the mechanisms of IAA transport in plants.

Collaboration


Dive into the Takeshi Nishimura's collaboration.

Top Co-Authors

Avatar

Tomokazu Koshiba

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Ken-ichiro Hayashi

Okayama University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akeo Kadota

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Atsuko Gyohda

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromi Suzuki

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Kasahara

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Masahiko Furutani

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sachiko Matsumoto

Tokyo Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge