Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiro Nagahama is active.

Publication


Featured researches published by Masahiro Nagahama.


Toxicon | 1991

Distribution of labeled Clostridium perfringens epsilon toxin in mice

Masahiro Nagahama; Jun Sakurai

The in vivo distribution of labeled Clostridium perfringens epsilon toxin after i.v. administration to mice was investigated. High amounts of radioactivity were found in the kidneys and the brain, and small amounts were in the heart, lungs, liver and stomach. On the other hand, the prior administration of epsilon prototoxin resulted in significant inhibition of the uptake of the radioactivity in the brain, but no effect in the other organs tested. The labeled prototoxin or toxin was dose-dependently accumulated in the brain after i.v. injection. However, the prototoxin inhibited the uptake of the toxin injected within 10 min after the administration of the prototoxin. The prototoxin also inhibited the uptake of labeled bovine serum albumin caused by the toxin in the brain. In the present paper, these data show that the toxin is specifically bound to the brain of mice.


Infection and Immunity | 2004

Binding and Internalization of Clostridium perfringens Iota-Toxin in Lipid Rafts

Masahiro Nagahama; Akiwo Yamaguchi; Tohko Hagiyama; Noriko Ohkubo; Keiko Kobayashi; Jun Sakurai

ABSTRACT Clostridium perfringens iota-toxin is a binary toxin composed of an enzymatic component (Ia) and a binding component (Ib). The oligomer of Ib formed in membranes induces endocytosis. We examined the binding and internalization of Ib by using Cy3-labeled Ib. Labeled Ib was retained at the membranes of MDCK cells for 60 min of incubation at 37°C, and later it was detected in cytoplasmic vesicles. To determine whether Ib associates with lipid rafts, we incubated MDCK cells with Ib at 4 or 37°C and fractionated the Triton-insoluble membranes. An Ib complex of 500 kDa was localized at 37°C to the insoluble fractions that fulfilled the criteria of lipid rafts, but it did not form at 4°C. The amount of complex in the raft fraction reached a maximum after 60 min of incubation at 37°C. When the cells that were preincubated with Ib at 4°C were incubated at 37°C, the complex was detected in the raft fraction. The treatment of MDCK cells with methyl-β-cyclodextrin reduced the localization of the Ib complex to the rafts and the rounding of the cells induced by Ia plus Ib. When 125I-labeled Ia was incubated with the cells in the presence of Ib at 37°C, it was localized in the raft fraction. Surface plasmon resonance analysis revealed that Ia binds to the oligomer of Ib. We conclude that Ib binds to a receptor in membranes and then moves to rafts and that Ia bound to the oligomer of Ib formed in the rafts is internalized.


Toxins | 2009

Clostridium perfringens Iota-Toxin: Structure and Function

Jun Sakurai; Masahiro Nagahama; Masataka Oda; Hideaki Tsuge; Keiko Kobayashi

Clostridium perfringens iota-toxin is composed of the enzyme component (Ia) and the binding component (Ib). Ib binds to receptor on targeted cells and translocates Ia into the cytosol of the cells. Ia ADP-ribosylates actin, resulting in cell rounding and death. Comparisons of the deduced amino acid sequence from the gene and three-dimensional structure of Ia with those of ADP-ribosylating toxins (ARTs) suggests that there is striking structural similarity among these toxins. Our objectives are to review the recent advances in the character, structure-function, and the mode of action of iota-toxin by consideration of the findings about ARTs.


Biochimica et Biophysica Acta | 1996

Membrane-damaging action of Clostridium perfringens alpha-toxin on phospholipid liposomes.

Masahiro Nagahama; Kei Michiue; Jun Sakurai

The effect of Clostridium perfringens alpha-toxin on multilamellar liposomes prepared from various phospholipids and cholesterol was investigated. The toxin induced carboxyfluorescein leakage from liposomes composed of the choline-containing phospholipids such as egg-yolk phosphatidylcholine and bovine brain sphingomyelin in dose-dependent manner, but did not induce leakage from those liposomes composed of bovine brain phosphatidylethanolamine, egg-yolk phosphatidylserine or phosphatidylglycerol. The toxin-induced carboxyfluorescein leakage from egg-yolk phosphatidylcholine liposomes was increased by addition of divalent cations. The toxin induced carboxyfluorescein release from liposomes composed of phosphatidylcholine containing unsaturated fatty acyl residues or shorter chain length saturated fatty acyl residues (12 or 14 carbon atoms), but did not induce such release from liposomes composed of phosphatidylcholine containing saturated fatty acyl residues of between 16 and 20 carbon atoms. Furthermore, the toxin-induced carboxyfluorescein release decreased with increasing chain length of acyl residues of phosphatidylcholine used. The toxin bound to liposomes composed of phospholipids which are hydrolyzed by the toxin, but did not bind to those composed of phospholipids which are not attacked by the toxin. The toxin-induced carboxyfluorescein release from liposomes composed of dipalmitoleoyl-L-alpha-phosphatidylcholine and cholesterol and the toxin binding to the liposomes decreased with decreasing cholesterol contents. These observations suggest that the specific binding site formed by the choline-containing phospholipids and cholesterol, and membrane fluidity in liposomes are essential for the membrane-damaging activity of alpha-toxin.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex

Toshiharu Tsurumura; Yayoi Tsumori; Hao Qiu; Masataka Oda; Jun Sakurai; Masahiro Nagahama; Hideaki Tsuge

Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD+ analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD+-bound form (NAD+-Ia-actin) and the ADP ribosylated form [Ia-ADP ribosylated (ADPR)-actin] remain unclear. Accidentally, we found that ethylene glycol as cryo-protectant inhibits ADP ribosylation and crystallized the NAD+-Ia-actin complex. Here we report high-resolution structures of NAD+-Ia-actin and Ia-ADPR-actin obtained by soaking apo-Ia-actin crystal with NAD+ under different conditions. The structures of NAD+-Ia-actin and Ia-ADPR-actin represent the pre- and postreaction states, respectively. By assigning the βTAD-Ia-actin structure to the transition state, the strain-alleviation model of ADP ribosylation, which we proposed previously, is experimentally confirmed and improved. Moreover, this reaction mechanism appears to be applicable not only to Ia but also to other ADP ribosyltransferases.


Infection and Immunity | 2011

Clostridium perfringens TpeL Glycosylates the Rac and Ras Subfamily Proteins

Masahiro Nagahama; Akiko Ohkubo; Masataka Oda; Keiko Kobayashi; Katsuhiko Amimoto; Kazuaki Miyamoto; Jun Sakurai

ABSTRACT Clostridium perfringens TpeL belongs to a family of large clostridial cytotoxins that encompasses Clostridium difficile toxin A (TcdA) and B (TcdB) and Clostridium sordellii lethal toxin (TcsL). We report here the identification of the TpeL-catalyzed modification of small GTPases. A recombinant protein (TpeL1-525) derived from the TpeL N-terminal catalytic domain in the presence of streptolysin O (SLO) induced the rounding of Vero cells and the glycosylation of cellular Rac1. Among several hexoses tested, UDP-N-acetyl-glucosamine (UDP-GlcNAc) and UDP-glucose (UDP-Glc) served as cosubstrates for TpeL1-525-catalyzed modifications. TpeL1-525 catalyzed the incorporation of UDP-Glc into Ha-Ras, Rap1B, and RalA and of UDP-GlcNAc into Rac1, Ha-Ras, Rap1B, and RalA. In Rac1, TpeL and TcdB share the same acceptor amino acid for glycosylation, Thr-35. In Vero cells treated with TpeL1-525 in the presence of SLO, glycosylation leads to a translocation of the majority of Rac1 and Ha-Ras to the membrane. We demonstrate for first time that TpeL uses both UDP-GlcNAc and UDP-Glc as donor cosubstrates and modifies the Rac1 and Ras subfamily by glycosylation to mediate its cytotoxic effects.


PLOS ONE | 2011

Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene.

Kazuaki Miyamoto; Natsuko Yumine; Kanako Mimura; Masahiro Nagahama; Jihong Li; Bruce A. McClane; Shigeru Akimoto

Clostridium perfringens enterotoxin (CPE) is a major virulence factor for human gastrointestinal diseases, such as food poisoning and antibiotic associated diarrhea. The CPE-encoding gene (cpe) can be chromosomal or plasmid-borne. Recent development of conventional PCR cpe-genotyping assays makes it possible to identify cpe location (chromosomal or plasmid) in type A isolates. Initial studies for developing cpe genotyping assays indicated that all cpe-positive strains isolated from sickened patients were typable by cpe-genotypes, but surveys of C. perfringens environmental strains or strains from feces of healthy people suggested that this assay might not be useful for some cpe-carrying type A isolates. In the current study, a pulsed-field gel electrophoresis Southern blot assay showed that four cpe-genotype untypable isolates carried their cpe gene on a plasmid of ∼65 kb. Complete sequence analysis of the ∼65 kb variant cpe-carrying plasmid revealed no intact IS elements and a disrupted cytosine methyltransferase (dcm) gene. More importantly, this plasmid contains a conjugative transfer region, a variant cpe gene and variant iota toxin genes. The toxin genes encoded by this plasmid are expressed based upon the results of RT-PCR assays. The ∼65 kb plasmid is closely related to the pCPF4969 cpe plasmid of type A isolates. MLST analyses indicated these isolates belong to a unique cluster of C. perfringens. Overall, these isolates carrying a variant functional cpe gene and iota toxin genes represent unique type E strains.


Infection and Immunity | 2009

Binding and Internalization of Clostridium botulinum C2 Toxin

Masahiro Nagahama; Tohko Hagiyama; Takashi Kojima; Kouhei Aoyanagi; Chihiro Takahashi; Masataka Oda; Yoshihiko Sakaguchi; Keiji Oguma; Jun Sakurai

ABSTRACT Clostridium botulinum C2 toxin is a binary toxin composed of an enzymatic component (C2I) and a binding component (C2II). The activated binding component (C2IIa) forms heptamers, and the oligomer with C2I is taken up by receptor-mediated endocytosis. We investigated the binding and internalization of C2IIa in cells. The C2IIa monomer formed oligomers on lipid rafts in membranes of MDCK cells. Methyl-beta-cyclodextrin inhibited the binding of C2IIa and the rounding of the cells induced by C2I plus C2IIa. C2I was localized to the rafts in the presence, but not the absence, of C2IIa. Surface plasmon resonance analysis revealed that C2I bound to the oligomer of C2IIa, but not the monomer of C2IIa. C2I and C2IIa were rapidly internalized in the cells. LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, inhibited the internalization of C2IIa in the cells and the rounding activity in the presence of C2I plus C2IIa. Incubation of the cells with C2I plus C2IIa resulted in the activation of PI3K and in phosphorylation of phosphoinositide-dependent kinase 1 and protein kinase B/Akt (Akt), but that with C2IIa alone did not. Akt inhibitor X, an Akt phosphorylation inhibitor, inhibited the rounding activity but not the internalization of C2IIa. The results suggest that the binding of C2I to the oligomer of C2IIa on rafts triggers the activation of the PI3K-Akt signaling pathway and, in turn, the initiation of endocytosis.


Infection and Immunity | 2011

Clostridium perfringens Iota-Toxin b Induces Rapid Cell Necrosis

Masahiro Nagahama; Mariko Umezaki; Masataka Oda; Keiko Kobayashi; Shigenobu Tone; Taiji Suda; Kazumi Ishidoh; Jun Sakurai

ABSTRACT Clostridium perfringens iota-toxin is a binary toxin composed of an enzyme component (Ia) and a binding component (Ib). Each component alone lacks toxic activity, but together they produce cytotoxic effects. We examined the cytotoxicity of iota-toxin Ib in eight cell lines. A431 and A549 cells were susceptible to Ib, but MDCK, Vero, CHO, Caco-2, HT-29, and DLD-1 cells were not. Ib bound and formed oligomers in the membranes of A431 and MDCK cells. However, Ib entered MDCK cells but not A431 cells, suggesting that uptake is essential for cellular survival. Ib also induced cell swelling and the rapid depletion of cellular ATP in A431 and A549 cells but not the insensitive cell lines. In A431 cells, Ib binds and oligomerizes mainly in nonlipid rafts in the membranes. Disruption of lipid rafts by methyl-β-cyclodextrin did not impair ATP depletion or cell death caused by Ib. Ib induced permeabilization by propidium iodide without DNA fragmentation in A431 cells. Ultrastructural studies revealed that A431 cells undergo necrosis after treatment with Ib. Ib caused a disruption of mitochondrial permeability and the release of cytochrome c. Staining with active-form-specific antibodies showed that the proapoptotic Bcl-2-family proteins Bax and Bak were activated and colocalized with mitochondria in Ib-treated A431 cells. We demonstrate that Ib by itself produces cytotoxic activity through necrosis.


Journal of Lipid Research | 2008

The relationship between the metabolism of sphingomyelin species and the hemolysis of sheep erythrocytes induced by Clostridium perfringens α-toxin

Masataka Oda; Takayuki Matsuno; Ryouta Shiihara; Sadayuki Ochi; Rieko Yamauchi; Yuki Saito; Hiroshi Imagawa; Masahiro Nagahama; Mugio Nishizawa; Jun Sakurai

Clostridium perfringens α-toxin induces the hemolysis of sheep erythrocytes by activating the metabolism of sphingomyelin (SM) via a GTP binding protein in membranes. α-Toxin stimulated the formation of 15-N-nervonoyl sphingosine (C24:1-ceramide), which was identified by positive ion fast atom bombardment-MS and 1H-NMR spectroscopy. C24:1-ceramide stimulated the toxin-induced hemolysis of saponin-pretreated sheep erythrocytes and increased the production of sphingosine 1-phosphate (S1P) in the cells, but N-lignoceroyl sphingosine did not. These events elicited by the toxin in the presence of C24:1-ceramide were significantly attenuated by treatment with dihydrosphingosine, a sphingosine kinase inhibitor. TLC showed that the level of C24:1-ceramide was highest among the ceramides with an unsaturated bond in the fatty acyl chain in the detergent-resistant membranes (DRMs). The toxin specifically bound to DRMs rich in cholesterol, resulting in the hydrolysis of N-nervonoic sphingomyelin (C24:1-SM) in DRMs. Treatment of the cells with pertussis toxin (PT) inhibited the α-toxin-induced formation of C24:1-ceramide from C24:1-SM in DRMs and hemolysis, indicating that endogenous sphingomyelinase, which hydrolyzes C24:1-SM to C24:1-ceramide, is controlled by PT-sensitive GTP binding protein in membranes. These results show that the toxin-induced metabolism of C24:1-SM to S1P in DRMs plays an important role in the toxin-induced hemolysis of sheep erythrocytes.

Collaboration


Dive into the Masahiro Nagahama's collaboration.

Top Co-Authors

Avatar

Jun Sakurai

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaya Takehara

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar

Kazuaki Miyamoto

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar

Soshi Seike

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar

Sadayuki Ochi

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Imagawa

Tokushima Bunri University

View shared research outputs
Researchain Logo
Decentralizing Knowledge