Soshi Seike
Tokushima Bunri University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soshi Seike.
PLOS ONE | 2012
Masataka Oda; Manabu Hashimoto; Masaya Takahashi; Yuka Ohmae; Soshi Seike; Ryoko Kato; Aoi Fujita; Hideaki Tsuge; Masahiro Nagahama; Sadayuki Ochi; Teppei Sasahara; Shunji Hayashi; Yoshikazu Hirai; Jun Sakurai
Bacillus cereus (B. cereus) is a pathogen in opportunistic infections. Here we show that Bacillus cereus sphingomyelinase (Bc-SMase) is a virulence factor for septicemia. Clinical isolates produced large amounts of Bc-SMase, grew in vivo, and caused death among mice, but ATCC strains isolated from soil did not. A transformant of the ATCC strain carrying a recombinant plasmid containing the Bc-SMase gene grew in vivo, but that with the gene for E53A, which has little enzymatic activity, did not. Administration of an anti-Bc-SMase antibody and immunization against Bc-SMase prevented death caused by the clinical isolates, showing that Bc-SMase plays an important role in the diseases caused by B. cereus. Treatment of mouse macrophages with Bc-SMase resulted in a reduction in the generation of H2O2 and phagocytosis of macrophages induced by peptidoglycan (PGN), but no effect on the release of TNF-α and little release of LDH under our experimental conditions. Confocal laser microscopy showed that the treatment of mouse macrophages with Bc-SMase resulted in the formation of ceramide-rich domains. A photobleaching analysis suggested that the cells treated with Bc-SMase exhibited a reduction in membrane fluidity. The results suggest that Bc-SMase is essential for the hydrolysis of SM in membranes, leading to a reduction in phagocytosis.
Infection and Immunity | 2013
Masahiro Nagahama; Masahiro Shibutani; Soshi Seike; Mami Yonezaki; Teruhisa Takagishi; Masataka Oda; Keiko Kobayashi; Jun Sakurai
ABSTRACT Clostridium perfringens beta-toxin is an important agent of necrotic enteritis and enterotoxemia. Beta-toxin is a pore-forming toxin (PFT) that causes cytotoxicity. Two mitogen-activated protein kinase (MAPK) pathways (p38 and c-Jun N-terminal kinase [JNK]-like) provide cellular defense against various stresses. To investigate the role of the MAPK pathways in the toxic effect of beta-toxin, we examined cytotoxicity in five cell lines. Beta-toxin induced cytotoxicity in cells in the following order: THP-1 = U937 > HL-60 > BALL-1 = MOLT-4. In THP-1 cells, beta-toxin formed oligomers on lipid rafts in membranes and induced the efflux of K+ from THP-1 cells in a dose- and time-dependent manner. The phosphorylation of p38 MAPK and JNK occurred in response to an attack by beta-toxin. p38 MAPK (SB203580) and JNK (SP600125) inhibitors enhanced toxin-induced cell death. Incubation in K+-free medium intensified p38 MAPK activation and cell death induced by the toxin, while incubation in K+-high medium prevented those effects. While streptolysin O (SLO) reportedly activates p38 MAPK via reactive oxygen species (ROS), we showed that this pathway did not play a major role in p38 phosphorylation in beta-toxin-treated cells. Therefore, we propose that beta-toxin induces activation of the MAPK pathway to promote host cell survival.
Biochimica et Biophysica Acta | 2015
Masahiro Nagahama; Soshi Seike; Hidenori Shirai; Teruhisa Takagishi; Keiko Kobayashi; Masaya Takehara; Jun Sakurai
BACKGROUND Clostridium perfringens beta-toxin is a pore-forming toxin (PFT) and an important agent of necrotic enteritis and enterotoxemia. We recently reported that beta-toxin strongly induced cell death in THP-1 cells via the formation of oligomers. We here describe that the P2X(7) receptor, which is an ATP receptor, interacts with beta-toxin. METHODS We tested the role of P2X(7) receptor in beta-toxin-induced toxicity using specific inhibitors, knockdown of receptor, expression of the receptor and interaction by dot-blot assay. The potency of P2X(7) receptor was further determined using an in vivo mouse model. RESULTS Selective P2X(7) receptor antagonists (oxidized ATP (o-ATP), oxidized ADP, and Brilliant Blue G (BBG)) inhibited beta-toxin-induced cytotoxicity in THP-1 cells. o-ATP also blocked the binding of beta-toxin to cells. The P2X(7) receptor and beta-toxin oligomer were localized in the lipid rafts of THP-1 cells. siRNA for the P2X(7) receptor inhibited toxin-induced cytotoxicity and binding of the toxin. In contrast, the siRNA knockdown of P2Y(2) or P2Y(6) had no effect on beta-toxin-induced cytotoxicity. The addition of beta-toxin to P2X(7)-transfected HEK-293 cells resulted in binding of beta-toxin oligomer. Moreover, beta-toxin specifically bound to immobilized P2X(7) receptors in vitro and colocalized with the P2X(7) receptor on the THP-1 cell surface. Furthermore, beta-toxin-induced lethality in mice was blocked by the preadministration of BBG. CONCLUSIONS The results of this study indicate that the P2X(7) receptor plays a role in beta-toxin-mediated cellular injury. GENERAL SIGNIFICANCE P2X(7) receptor is a potential target for the treatment of C. perfringens type C infection.
Scientific Reports | 2016
Masaya Takehara; Teruhisa Takagishi; Soshi Seike; Kaori Ohtani; Keiko Kobayashi; Kazuaki Miyamoto; Tohru Shimizu; Masahiro Nagahama
Although granulopoiesis is accelerated to suppress bacteria during infection, some bacteria can still cause life-threatening infections, but the mechanism behind this remains unclear. In this study, we found that mature neutrophils in bone marrow cells (BMCs) were decreased in C. perfringens-infected mice and also after injection of virulence factor α-toxin. C. perfringens infection interfered with the replenishment of mature neutrophils in the peripheral circulation and the accumulation of neutrophils at C. perfringens-infected sites in an α-toxin-dependent manner. Measurements of bacterial colony-forming units in C. perfringens-infected muscle revealed that α-toxin inhibited a reduction in the load of C. perfringens. In vitro treatment of isolated BMCs with α-toxin (phospholipase C) revealed that α-toxin directly decreased mature neutrophils. α-Toxin did not influence the viability of isolated mature neutrophils, while simultaneous treatment of BMCs with granulocyte colony-stimulating factor attenuated the reduction of mature neutrophils by α-toxin. Together, our results illustrate that impairment of the innate immune system by the inhibition of neutrophil differentiation is crucial for the pathogenesis of C. perfringens to promote disease to a life-threatening infection, which provides new insight to understand how pathogenic bacteria evade the host immune system.
PLOS ONE | 2016
Soshi Seike; Kazuaki Miyamoto; Keiko Kobayashi; Masaya Takehara; Masahiro Nagahama
Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis.
Toxins | 2017
Masaya Takehara; Teruhisa Takagishi; Soshi Seike; Masataka Oda; Yoshihiko Sakaguchi; Junzo Hisatsune; Sadayuki Ochi; Keiko Kobayashi; Masahiro Nagahama
Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.
Infection and Immunity | 2017
Masahiro Nagahama; Masaya Takehara; Teruhisa Takagishi; Soshi Seike; Kazuaki Miyamoto; Keiko Kobayashi
ABSTRACT Clostridium botulinum C2 toxin consists of an enzyme component (C2I) and a binding component (C2II). Activated C2II (C2IIa) binds to a cell receptor, giving rise to lipid raft-dependent oligomerization, and it then assembles with C2I. The whole toxin complex is then endocytosed into the cytosol, resulting in the destruction of the actin cytoskeleton and cell rounding. Here, we showed that C2 toxin requires acid sphingomyelinase (ASMase) activity during internalization. In this study, inhibitors of ASMase and lysosomal exocytosis blocked C2 toxin-induced cell rounding. C2IIa induced Ca2+ influx from the extracellular medium to cells. C2 toxin-induced cell rounding was enhanced in the presence of Ca2+. ASMase was released extracellularly when cells were incubated with C2IIa in the presence of Ca2+. Small interfering RNA (siRNA) knockdown of ASMase reduced C2 toxin-induced cell rounding. ASMase hydrolyzes sphingomyelin to ceramide on the outer leaflet of the membrane at acidic pH. Ceramide was detected in cytoplasmic vesicles containing C2IIa. These results indicated that ASMase activity is necessary for the efficient internalization of C2 toxin into cells. Inhibitors of ASMase may confer protection against infection.
Biochimica et Biophysica Acta | 2016
Soshi Seike; Masaya Takehara; Keiko Kobayashi; Masahiro Nagahama
BACKGROUND Beta-toxin produced by Clostridium perfringens is a key virulence factor of fatal hemorrhagic enterocolitis and enterotoxemia. This toxin belongs to a family of β-pore-forming toxins (PFTs). We reported recently that the ATP-gated P2X7 receptor interacts with beta-toxin. The ATP-release channel pannexin 1 (Panx1) is an important contributor to P2X7 receptor signaling. Hence, we investigated the involvement of Panx1 in beta-toxin-caused cell death. METHODS We examined the effect of Panx1 in beta-toxin-induced cell death utilizing selective antagonists, knockdown of Panx1, and binding using dot-blot analysis. Localization of Panx1 and the P2X7 receptor after toxin treatment was determined by immunofluorescence staining. RESULTS Selective Panx1 antagonists (carbenoxolone [CBX], probenecid, and Panx1 inhibitory peptide) prevented beta-toxin-caused cell death in THP-1 cells. CBX did not block the binding of the toxin to cells. Small interfering knockdown of Panx1 blocked beta-toxin-mediated cell death through inhibiting the oligomer formation of the toxin. Beta-toxin triggered a transient ATP release from THP-1 cells, but this early ATP release was blocked by CBX. ATP scavengers (apyrase and hexokinase) inhibited beta-toxin-induced cytotoxicity. Furthermore, co-administration of ATP with beta-toxin enhanced the binding and cytotoxicity of the toxin. CONCLUSIONS Based on our results, Panx1 activation is achieved through the interaction of beta-toxin with the P2X7 receptor. Then, ATP released by the Panx1 channel opening promotes oligomer formation of the toxin, leading to cell death. GENERAL SIGNIFICANCE Pannexin 1 is a novel candidate therapeutic target for beta-toxin-mediated disease.
Biochimica et Biophysica Acta | 2018
Soshi Seike; Masaya Takehara; Teruhisa Takagishi; Kazuaki Miyamoto; Keiko Kobayashi; Masahiro Nagahama
Clostridium perfringens delta-toxin is a β-barrel-pore-forming toxin (β-PFT) and a presumptive virulence factor of type B and C strains, which are causative organisms of fatal intestinal diseases in animals. We showed previously that delta-toxin causes cytotoxicity via necrosis in sensitive cells. Here, we examined the effect of delta-toxin on intestinal membrane integrity. Delta-toxin led to a reduction in transepithelial electrical resistance (TEER) and increased the permeability of fluorescence isothiocyanate-conjugated dextran in human intestinal epithelial Caco-2 cells without changing the tight junction proteins, such as zonula occludens-1 (ZO-1), occludin, and claudin-1. On the other hand, delta-toxin reduced the cellular levels of adherence junction protein E-cadherin before cell injury. A disintegrin and metalloprotease (ADAM) 10 facilitates E-cadherin cleavage and was identified as the cellular receptor for alpha-toxin, a β-PFT produced by Staphylococcus aureus. ADAM10 inhibitor (GI254023X) blocked the toxin-induced decrease in TEER and cleavage of E-cadherin. Delta-toxin enhanced ADAM10 activity in a dose- and time-dependent manner. Furthermore, delta-toxin colocalized with ADAM10. These results indicated that ADAM10 plays a key role in delta-toxin-induced intestinal injury.
Scientific Reports | 2017
Teruhisa Takagishi; Masaya Takehara; Soshi Seike; Kazuaki Miyamoto; Keiko Kobayashi; Masahiro Nagahama
Clostridium perfringens α-toxin induces hemolysis of erythrocytes from various species, but it has not been elucidated whether the toxin affects erythropoiesis. In this study, we treated bone marrow cells (BMCs) from mice with purified α-toxin and found that TER119+ erythroblasts were greatly decreased by the treatment. A variant α-toxin defective in enzymatic activities, phospholipase C and sphingomyelinase, had no effect on the population of erythroblasts, demonstrating that the decrease in erythroblasts was dependent of its enzymatic activities. α-Toxin reduced the CD71+TER119+ and CD71–TER119+ cell populations but not the CD71+TER119− cell population. In addition, α-toxin decreased the number of colony-forming unit erythroid colonies but not burst-forming unit erythroid colonies, indicating that α-toxin preferentially reduced mature erythroid cells compared with immature cells. α-Toxin slightly increased annexinV+ cells in TER119+ cells. Additionally, simultaneous treatment of BMCs with α-toxin and erythropoietin greatly attenuated the reduction of TER119+ erythroblasts by α-toxin. Furthermore, hemin-induced differentiation of human K562 erythroleukemia cells was impaired by α-toxin, whereas the treatment exhibited no apparent cytotoxicity. These results suggested that α-toxin mainly inhibited erythroid differentiation. Together, our results provide new insights into the biological activities of α-toxin, which might be important to understand the pathogenesis of C. perfringens infection.