Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiro Tokumura is active.

Publication


Featured researches published by Masahiro Tokumura.


Chemosphere | 2011

Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II

Takuya Maezono; Masahiro Tokumura; Makoto Sekine; Yoshinori Kawase

Dynamic behaviors of hydroxyl (OH) radical generation and consumption in photo-Fenton oxidation process were investigated by measuring OH radical concentration during the discoloration of azo-dye Orange II. The effects of operating parameters for photo-Fenton discoloration, i.e. dosages of H(2)O(2) and Fe, initial dye concentration, solution pH and UV irradiation, on the generation and consumption of OH radicals playing the main role in advanced oxidation processes were extensively studied. The scavenger probe or trapping technique in which coumarin is scavenger of OH radical was applied to estimate OH radical concentration in the photoreactor during the photo-Fenton discoloration process. The OH radical generation was enhanced with increasing the dosages of Fenton regents, H(2)O(2) and Fe. At the initial stage of photo-Fenton discoloration of Orange II, the OH radical concentration rapidly increased (Phase-I) and the OH radical concentration decreased after reaching of OH radical concentration at maximum value (Phase-II). The decrease in OH radical concentration started when the complete discoloration of Orange II was nearly achieved and the H(2)O(2) concentration became rather low. The dynamic behavior of OH radical concentration during the discoloration of Orange II was found to be strongly linked with the change in H(2)O(2) concentration. The generation of OH radical was maximum at solution pH of 3.0 and decreased with an increase of solution pH. The OH radical generation rate in the Fenton Process was rather slower than that in the photo-Fenton process.


Journal of Hazardous Materials | 2012

Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation.

Ayana Shimizu; Masahiro Tokumura; Koshiro Nakajima; Yoshinori Kawase

The mechanism for removal of phenol by zero-valent iron (ZVI) was quantitatively evaluated in the presence of dissolved oxygen by varying the pH from 2 to 8.1 (natural). The measurement of OH radical concentration suggests that the removal of phenol by ZVI was occurred due to the decomposition by the Fenton reaction besides the adsorption/precipitation to the iron surface. From the measurements of dissolved organic carbon (DOC) in the filtrate with the 0.45 μm syringe filter and the solution obtained from acidification of suspended precipitates, the roles of decomposition by the Fenton reaction and adsorption/precipitation were separately evaluated. At solution pH 3, 91% of phenol removal was achieved and 24% of TOC (total organic carbon) decreased. The contribution of the Fenton reaction was found to be 77% of overall TOC reduction. When the pH values were 4 and 5, the overall TOC removal was found to be mainly due to the adsorption/precipitation. At pH 2 and 8.1, the reduction of TOC was very small. The pH and dissolved oxygen significantly affected the dissolution of iron and the production of OH radicals and changed the roles of phenol removal by the Fenton reaction and adsorption/precipitation.


Water Research | 2008

Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction : Effect of solar light dose on decolorization kinetics

Masahiro Tokumura; Hussein Znad; Yoshinori Kawase

The decolorization of dark brown colored coffee effluent by solar photo-Fenton process has been studied. Effects of accumulated solar light energy and dosage of Fenton reagents (iron and hydrogen peroxide) on the color removal have been examined. With increasing Fe dosage the rate of the decolorization increased but the enhancement was not pronounced beyond 10 mg L(-1). Although addition of H(2)O(2) increased the decolorization rate up to around 1000 mg L(-1) of H(2)O(2), further addition of H(2)O(2) could not enhance the color removal. At excess dosages of Fenton reagents, the color removal was not improved due to their scavenging of hydroxyl radicals. It was found that the pseudo-first order decolorization kinetic constant based on the accumulated solar energy is a sole parameter unifying solar photo-Fenton decolorization processes under the different weather conditions. The kinetic constant can be readily used to calculate the amount of solar energy required to achieve a certain degree of color removal. The mineralization was rather slower as compared with the decolorization. The decolorization capability with solar irradiation was found to be comparable to UV light irradiation. The present results suggest that abundant solar energy driving decolorization of coffee effluent by photo-Fenton reaction is highly efficient.


Journal of Hazardous Materials | 2009

Solubilization of excess sludge in activated sludge process using the solar photo-Fenton reaction.

Masahiro Tokumura; H. Katoh; Takashi Katoh; Hussein Znad; Yoshinori Kawase

The solubilization of excess sludge by the solar photo-Fenton reaction has been investigated for the reduction of excess sludge in the activated sludge process. The solubilization kinetics depended on the dosages of the Fenton reagents, Fe and H(2)O(2). Increases of initial Fe and H(2)O(2) concentrations in their ranges studied in this work continuously enhanced the sludge solubilization. Cell lysis by the photo-Fenton reaction caused the increase in dissolved chemical oxygen demand (COD) in the first step of sludge solubilization. The further oxidative decomposition of the discharged organic compounds by the photo-Fenton reaction led to the decrease in the dissolved COD as the second step of sludge solubilization. The increase of dissolved COD in the first step of sludge solubilization and the consumption of H(2)O(2) could be described by the pseudo-zero order kinetics based on the accumulated light energy. About 40% reduction of mixed-liquor suspended solids (MLSS) by the solar photo-Fenton reaction was found. It was found that solar light used as a light energy source instead of costly and hazardous artificial UV light was very effective. The dissolved COD for solar photo-Fenton reaction increased faster and by 1.5 times as compared with that by artificial UV light.


Chemosphere | 2016

Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes

Masahiro Tokumura; Asato Sugawara; Mohammad Raknuzzaman; Habibullah-Al-Mamun; Shigeki Masunaga

Simple semi-theoretical models were developed to estimate the performance of three different kinds of advanced oxidation processes (AOPs) in the degradation of pharmaceuticals. The AOPs included the photo-Fenton process as an example of a liquid-liquid reaction, the TiO2 photocatalytic oxidation process as a solid-liquid reaction, and the combined ozone and hydrogen peroxide oxidation process as a gas-liquid reaction; the effects of the aqueous matrices (CESs: co-existing substances) of actual wastewater on the removal of pharmaceuticals (carbamazepine and diclofenac) was taken into account. By comparing the characteristic parameters of the models, obtained from the experiments using pure water and actual wastewater, the effects of CESs on the respective removal mechanisms could be separately and quantitatively evaluated. As a general tendency, the AOPs proceeded less effectively (were inhibited) in the matrices containing CESs, as observed with the use of a lower initial concentration of pharmaceuticals. The inhibition mechanisms differed for the three types of AOPs. In the photo-Fenton process, the Fenton reaction was improved by the incorporation of CESs, while the photo-reduction reaction was significantly inhibited. In the TiO2 photocatalytic oxidation process, competition between the pharmaceuticals and CESs for adsorption on the catalyst surface was a less significant inhibitory factor than the scavenger effects of the CESs. The combined ozone and hydrogen peroxide oxidation process was most strongly inhibited by CESs among the AOPs investigated in this study.


Chemosphere | 2008

Chemical absorption process for degradation of VOC gas using heterogeneous gas-liquid photocatalytic oxidation : Toluene degradation by photo-Fenton reaction

Masahiro Tokumura; Rina Nakajima; Hussein Znad; Yoshinori Kawase

A novel process for degradation of toluene in the gas-phase using heterogeneous gas-liquid photocatalytic oxidation has been developed. The degradation of toluene gas by photo-Fenton reaction in the liquid-phase has experimentally examined. The photo-Fenton reaction in the liquid-phase could improve the overall toluene absorption rate by increasing the driving force for mass transfer and as a result enhance the removal of toluene in the exhaust gas. The toluene concentrations in the inlet gas were varied in the range from 0.0968 to 8.69 g m(-3) with initial hydrogen peroxide concentration of 400 mg l(-1) and Fe dose of 5.0 mg l(-1). It was found that toluene in the inlet gas was almost completely dissolved into water and degraded in the liquid-phase for the inlet toluene gas concentration of less than 0.42 g m(-3). The dynamic process of toluene gas degradation by the photo-Fenton reaction providing information for reaction kinetics and mass transfer rate was examined. Toluene removal kinetic analysis indicated that photo-Fenton degradation was significantly affected by H(2)O(2) concentration. The experimental results were satisfactorily described by the predictions simulated using the simplified tanks-in-series model combined with toluene removal kinetic analysis. The present results showed that the proposed chemical absorption process using the photo-Fenton heterogeneous gas-liquid photocatalytic oxidation is very effective for degradation of volatile organic gases.


Chemosphere | 2012

Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction - Preventing emission of by-products

Masahiro Tokumura; Yuko Wada; Yuri Usami; Takako Yamaki; Atsushi Mizukoshi; Miyuki Noguchi; Yukio Yanagisawa

The photo-Fenton reaction was applied as a novel method for the removal of volatile organic compounds (VOCs) in the gas phase, and its effectiveness was experimentally examined. In conventional VOCs removal methods using a photocatalyst or ozone, VOCs are oxidized in the gas phase. Therefore, incompletely oxidized intermediates, which may have adverse effects on health, are likely to contaminate the treated air. On the other hand, in the VOCs removal method developed in this study, because the VOCs are oxidized in the liquid phase by the photo-Fenton reaction, any incompletely oxidized intermediates produced are confined to the liquid phase. As a result, the contamination of the treated air by these harmful intermediates can be prevented. Using a semi-batch process, it was found that the removal efficiency for toluene in a one-pass test (residence time of 17s) was 61%, for an inlet toluene gas concentration of 930 ppbv, an initial iron ion concentration of 20 mg L(-1), and an initial hydrogen peroxide concentration of 630 mg L(-1). The removal efficiency was almost constant as long as H(2)O(2) was present in the solution. Proton transfer reaction mass spectrometry analysis confirmed the absence of any incompletely oxidized intermediates in the treated air.


Water Science and Technology | 2012

Photocatalytic degradation of p-nitrophenol by zinc oxide particles

M. Sugiyama; Z. Salehi; Masahiro Tokumura; Yoshinori Kawase

The degradation of p-nitrophenol (PNP) by ZnO particles has been studied. With increasing PNP loading the degradation rate decreased. The mineralization of PNP was rather slow compared with the degradation. With a decrease in particle diameter or an increase in surface area, the degradation rate significantly increased. The degradation capability with solar irradiation was found to be superior to UV light irradiation. It was found that 30 mg L(-1) of PNP was completely degraded by solar light with the accumulated UV light of around 23 kJ L(-1) at ZnO dosage of 5 g L(-1). The degradation PNP by ZnO with UV light or solar light was faster than that by TiO(2).


International Journal of Environmental Research and Public Health | 2010

Measurement of Secondary Products During Oxidation Reactions of Terpenes and Ozone Based on the PTR-MS Analysis: Effects of Coexistent Carbonyl Compounds

Yusuke Ishizuka; Masahiro Tokumura; Atsushi Mizukoshi; Miyuki Noguchi; Yukio Yanagisawa

Continuous measurements using proton transfer reaction mass spectrometry (PTR-MS) can be used to describe the production processes of secondary products during ozone induced oxidation of terpenes. Terpenes are emitted from woody building materials, and ozone is generated from ozone air purifiers and copy machines in indoor environments. Carbonyl compounds (CCs) are emitted by human activities such as smoking and drinking alcohol. Moreover, CCs are generated during ozone oxidation of terpenes. Therefore, coexistent CCs should affect the ozone oxidation. This study has focused on the measurement of secondary products during the ozone oxidation of terpenes based on the use of PTR-MS analysis and effects of coexistent CCs on oxidized products. Experiments were performed in a fluoroplastic bag containing α-pinene or limonene as terpenes, ozone and acetaldehyde or formaldehyde as coexistent CCs adjusted to predetermined concentrations. Continuous measurements by PTR-MS were conducted after mixing of terpenes, ozone and CCs, and time changes of volatile organic compounds (VOCs) concentrations were monitored. Results showed that, high-molecular weight intermediates disappeared gradually with elapsed time, though the production of high-molecular weight intermediates was observed at the beginning. This phenomenon suggested that the ozone oxidation of terpenes generated ultrafine particles. Coexistent CCs affected the ozone oxidation of α-pinene more than limonene.


Indoor Air | 2014

Indoor air quality and thermal comfort in temporary houses occupied after the Great East Japan Earthquake.

Naohide Shinohara; Masahiro Tokumura; Y. Yonemoto; M. Yoshioka; Naoki Kagi; Kenichi Hasegawa; Hiroshi Yoshino; U Yanagi

UNLABELLED Thermal conditions and indoor concentrations of aldehydes, volatile organic compounds (VOCs), and NO2 were investigated in 19 occupied temporary houses in 15 temporary housing estates constructed in Minamisoma City, Fukushima, Japan. The data were collected in winter, spring, and summer in January to July 2012. Thermal conditions in temporary log houses in the summer were more comfortable than those in pre-fabricated houses. In the winter, the indoor temperature was uncomfortably low in all of the houses, particularly the temporary log houses. Indoor air concentrations for most aldehydes and VOCs were much lower than the indoor guidelines, except for those of p-dichlorobenzene, acetaldehyde, and total VOCs. The indoor p-dichlorobenzene concentrations exceeded the guideline (240 μg/m(3)) in 18% of the temporary houses, and the 10(-3) cancer risk level (91 μg/m(3)) was exceeded in winter in 21% due to use of moth repellents by the occupants. Indoor acetaldehyde concentrations exceeded the guideline (48 μg/m(3) ) in about half of the temporary houses, likely originating from the wooden building materials. Indoor NO2 concentrations in the temporary houses were significantly higher in houses where combustion heating appliances were used (0.17 ± 0.11 ppm) than in those where they were not used (0.0094 ± 0.0065 ppm). PRACTICAL IMPLICATIONS In the winter, log-house-type temporary houses are comfortable in terms of humidity, dew condensation, and fungi based on the results of questionnaires and measurements, whereas pre-fabricated temporary houses are more comfortable in terms of temperature. In the summer, log-house-type temporary houses are comfortable in terms of temperature and humidity. More comfortable temporary housing in terms of temperature and humidity year-round is needed. Indoor air concentrations of p-dichlorobenzene and NO2 were quite high in some temporary houses due to occupants’ activities, such as use of moth repellents and combustion heating appliances. The government should provide recommendations for safe use of temporary houses by occupants.

Collaboration


Dive into the Masahiro Tokumura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeki Masunaga

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makoto Sekine

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar

Mohammad Raknuzzaman

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Wang

University of Shizuoka

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge