Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahiro Waza is active.

Publication


Featured researches published by Masahiro Waza.


Nature Medicine | 2005

17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration

Masahiro Waza; Hiroaki Adachi; Masahisa Katsuno; Makoto Minamiyama; Chen Sang; Fumiaki Tanaka; Akira Inukai; Manabu Doyu; Gen Sobue

Heat-shock protein 90 (Hsp90) functions as part of a multichaperone complex that folds, activates and assembles its client proteins. Androgen receptor (AR), a pathogenic gene product in spinal and bulbar muscular atrophy (SBMA), is one of the Hsp90 client proteins. We examined the therapeutic effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG), a potent Hsp90 inhibitor, and its ability to degrade polyglutamine-expanded mutant AR. Administration of 17-AAG markedly ameliorated motor impairments in the SBMA transgenic mouse model without detectable toxicity, by reducing amounts of monomeric and aggregated mutant AR. The mutant AR showed a higher affinity for Hsp90-p23 and preferentially formed an Hsp90 chaperone complex as compared to wild-type AR; mutant AR was preferentially degraded in the presence of 17-AAG in both cells and transgenic mice as compared to wild-type AR. 17-AAG also mildly induced Hsp70 and Hsp40. 17-AAG would thus provide a new therapeutic approach to SBMA and probably to other related neurodegenerative diseases.


The Journal of Neuroscience | 2007

CHIP Overexpression Reduces Mutant Androgen Receptor Protein and Ameliorates Phenotypes of the Spinal and Bulbar Muscular Atrophy Transgenic Mouse Model

Hiroaki Adachi; Masahiro Waza; Keisuke Tokui; Masahisa Katsuno; Makoto Minamiyama; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine tract within the androgen receptor (AR). The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of the mutant AR in the residual motor neurons and certain visceral organs. Many components of the ubiquitin-proteasome and molecular chaperones are also sequestered in the inclusions, suggesting that they may be actively engaged in an attempt to degrade or refold the mutant AR. C terminus of Hsc70 (heat shock cognate protein 70)-interacting protein (CHIP), a U-box type E3 ubiquitin ligase, has been shown to interact with heat shock protein 90 (Hsp90) or Hsp70 and ubiquitylates unfolded proteins trapped by molecular chaperones and degrades them. Here, we demonstrate that transient overexpression of CHIP in a neuronal cell model reduces the monomeric mutant AR more effectively than it does the wild type, suggesting that the mutant AR is more sensitive to CHIP than is the wild type. High expression of CHIP in an SBMA transgenic mouse model also ameliorated motor symptoms and inhibited neuronal nuclear accumulation of the mutant AR. When CHIP was overexpressed in transgenic SBMA mice, mutant AR was also preferentially degraded over wild-type AR. These findings suggest that CHIP overexpression ameliorates SBMA phenotypes in mice by reducing nuclear-localized mutant AR via enhanced mutant AR degradation. Thus, CHIP overexpression would provide a potential therapeutic avenue for SBMA.


Annals of Neurology | 2009

Phase 2 trial of leuprorelin in patients with spinal and bulbar muscular atrophy.

Haruhiko Banno; Masahisa Katsuno; Keisuke Suzuki; Yu Takeuchi; Motoshi Kawashima; Noriaki Suga; Motoko Takamori; Mizuki Ito; Tomohiko Nakamura; Koji Matsuo; Shin-ichi Yamada; Yumiko Oki; Hiroaki Adachi; Makoto Minamiyama; Masahiro Waza; Naoki Atsuta; Hirohisa Watanabe; Yasushi Fujimoto; Tsutomu Nakashima; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary motor neuron disease caused by the expansion of a polyglutamine tract in the androgen receptor (AR). Animal studies have shown that the pathogenesis of SBMA is dependent on serum testosterone level. This study is aimed at evaluating the efficacy and safety of androgen deprivation by leuprorelin acetate in patients with SBMA.


The Journal of Neuroscience | 2006

Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration

Masahisa Katsuno; Hiroaki Adachi; Makoto Minamiyama; Masahiro Waza; Keisuke Tokui; Haruhiko Banno; Keisuke Suzuki; Yu Onoda; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary neurodegenerative disease caused by an expansion of a trinucleotide CAG repeat encoding the polyglutamine tract in the androgen receptor (AR) gene. To elucidate the pathogenesis of polyglutamine-mediated motor neuron dysfunction, we investigated histopathological and biological alterations in a transgenic mouse model of SBMA carrying human pathogenic AR. In affected mice, neurofilaments and synaptophysin accumulated at the distal motor axon. A similar intramuscular accumulation of neurofilament was detected in the skeletal muscle of SBMA patients. Fluoro-gold labeling and sciatic nerve ligation demonstrated an impaired retrograde axonal transport in the transgenic mice. The mRNA level of dynactin 1, an axon motor for retrograde transport, was significantly reduced in the SBMA mice resulting from pathogenic AR-induced transcriptional dysregulation. These pathological events were observed before the onset of neurological symptoms, but were reversed by castration, which prevents nuclear accumulation of pathogenic AR. Overexpression of dynactin 1 mitigated neuronal toxicity of the pathogenic AR in a cell culture model of SBMA. These observations indicate that polyglutamine-dependent transcriptional dysregulation of dynactin 1 plays a crucial role in the reversible neuronal dysfunction in the early stage of SBMA.


Human Molecular Genetics | 2009

17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse

Keisuke Tokui; Hiroaki Adachi; Masahiro Waza; Masahisa Katsuno; Makoto Minamiyama; Hideki Doi; Keiji Tanaka; Jun Hamazaki; Shigeo Murata; Fumiaki Tanaka; Gen Sobue

The ubiquitin-proteasome system (UPS) is the principal protein degradation system that tags and targets short-lived proteins, as well as damaged or misfolded proteins, for destruction. In spinal and bulbar muscular atrophy (SBMA), the androgen receptor (AR), an Hsp90 client protein, is such a misfolded protein that tends to aggregate in neurons. Hsp90 inhibitors promote the degradation of Hsp90 client proteins via the UPS. In a transgenic mouse model of SBMA, we examined whether a functioning UPS is preserved, if it was capable of degrading polyglutamine-expanded mutant AR, and what might be the therapeutic effects of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), an oral Hsp90 inhibitor. Ubiquitin-proteasomal function was well preserved in SBMA mice and was even increased during advanced stages when the mice developed severe phenotypes. Administration of 17-DMAG markedly ameliorated motor impairments in SBMA mice without detectable toxicity and reduced amounts of monomeric and nuclear-accumulated mutant AR. Mutant AR was preferentially degraded in the presence of 17-DMAG in both SBMA cell and mouse models when compared with wild-type AR. 17-DMAG also significantly induced Hsp70 and Hsp40. Thus, 17-DMAG would exert a therapeutic effect on SBMA via preserved proteasome function.


Journal of Molecular Medicine | 2006

Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein

Masahiro Waza; Hiroaki Adachi; Masahisa Katsuno; Makoto Minamiyama; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Abnormal accumulation of disease-causing protein is a commonly observed characteristic in chronic neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and polyglutamine (polyQ) diseases. A therapeutic approach that could selectively eliminate would be a promising remedy for neurodegenerative disorders. Spinal and bulbar muscular atrophy (SBMA), one of the polyQ diseases, is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. The pathogenic gene product is polyQ-expanded androgen receptor (AR), which belongs to the heat shock protein (Hsp) 90 client protein family. 17-Allylamino-17-demethoxygeldanamycin (17-AAG), a novel Hsp90 inhibitor, is a new derivative of geldanamycin that shares its important biological activities but shows less toxicity. 17-AAG is now in phase II clinical trials as a potential anti-cancer agent because of its ability to selectively degrade several oncoproteins. We have recently demonstrated the efficacy and safety of 17-AAG in a mouse model of SBMA. The administration of 17-AAG significantly ameliorated polyQ-mediated motor neuron degeneration by reducing the total amount of mutant AR. 17-AAG accomplished the preferential reduction of mutant AR mainly through Hsp90 chaperone complex formation and subsequent proteasome-dependent degradation. 17-AAG induced Hsp70 and Hsp40 in vivo as previously reported; however, its ability to induce HSPs was limited, suggesting that the HSP induction might support the degradation of mutant protein. The ability of 17-AAG to preferentially degrade mutant protein would be directly applicable to SBMA and other neurodegenerative diseases in which the disease-causing proteins also belong to the Hsp90 client protein family. Our proposed therapeutic approach, modulation of Hsp90 function by 17-AAG treatment, has emerged as a candidate for molecular-targeted therapies for neurodegenerative diseases. This review will consider our research findings and discuss the possibility of a clinical application of 17-AAG to SBMA and other neurodegenerative diseases.


Journal of Biological Chemistry | 2009

TDP-43 Depletion Induces Neuronal Cell Damage through Dysregulation of Rho Family GTPases

Yohei Iguchi; Masahisa Katsuno; Jun-ichi Niwa; Shin-ichi Yamada; Jun Sone; Masahiro Waza; Hiroaki Adachi; Fumiaki Tanaka; Koh-ichi Nagata; Nariko Arimura; Takashi Watanabe; Kozo Kaibuchi; Gen Sobue

The 43-kDa TAR DNA-binding protein (TDP-43) is known to be a major component of the ubiquitinated inclusions characteristic of amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin-positive inclusions. Although TDP-43 is a nuclear protein, it disappears from the nucleus of affected neurons and glial cells, implicating TDP-43 loss of function in the pathogenesis of neurodegeneration. Here we show that the knockdown of TDP-43 in differentiated Neuro-2a cells inhibited neurite outgrowth and induced cell death. In knockdown cells, the Rho family members RhoA, Rac1, and Cdc42 GTPases were inactivated, and membrane localization of these molecules was reduced. In addition, TDP-43 depletion significantly suppressed protein geranylgeranylation, a key regulating factor of Rho family activity and intracellular localization. In contrast, overexpression of TDP-43 mitigated the cellular damage caused by pharmacological inhibition of geranylgeranylation. Furthermore administration of geranylgeranyl pyrophosphate partially restored cell viability and neurite outgrowth in TDP-43 knockdown cells. In summary, our data suggest that TDP-43 plays a key role in the maintenance of neuronal cell morphology and survival possibly through protein geranylgeranylation of Rho family GTPases.


Experimental Neurology | 2006

Pathogenesis, animal models and therapeutics in spinal and bulbar muscular atrophy (SBMA).

Masahisa Katsuno; Hiroaki Adachi; Masahiro Waza; Haruhiko Banno; Keisuke Suzuki; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a hereditary neurodegenerative disease characterized by slowly progressive muscle weakness and atrophy of bulbar, facial, and limb muscles. The cause of SBMA is expansion of a trinucleotide CAG repeat, which encodes the polyglutamine tract, in the first exon of the androgen receptor (AR) gene. SBMA chiefly occurs in adult males, whereas neurological symptoms are rarely detected in females having mutant AR gene. The cardinal histopathological finding of SBMA is loss of lower motor neurons in the anterior horn of spinal cord as well as in brainstem motor nuclei. Animal models carrying human mutant AR gene recapitulate polyglutamine-mediated motor neuron degeneration, providing clues to the pathogenesis of SBMA. There is increasing evidence that testosterone, the ligand of AR, plays a pivotal role in the pathogenesis of neurodegeneration in SBMA. The striking success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of pathophysiology using animal models leads to emergence of candidate drugs to treat this devastating disease: HSP inducer, Hsp90 inhibitor, and histone deacetylase inhibitor. Utilizing biomarkers such as scrotal skin biopsy would improve efficacy of clinical trials to verify the results from animal studies. Advances in basic and clinical researches on SBMA are now paving the way for clinical application of potential therapeutics.


The Journal of Neuroscience | 2010

Disrupted Transforming Growth Factor-β Signaling in Spinal and Bulbar Muscular Atrophy

Masahisa Katsuno; Hiroaki Adachi; Makoto Minamiyama; Masahiro Waza; Hideki Doi; Naohide Kondo; Hiroyuki Mizoguchi; Atsumi Nitta; Kiyofumi Yamada; Haruhiko Banno; Keisuke Suzuki; Fumiaki Tanaka; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) is a late-onset lower motor neuron disease caused by the expansion of a trinucleotide CAG repeat, which encodes a polyglutamine tract in androgen receptor (AR). Although it is commonly held that the pathogenic polyglutamine proteins accumulate in neurons and thereby induce transcriptional dysregulation, the downstream molecular events have remained elusive. Here, we examined whether TGF-β signaling is dysregulated in SBMA. Nuclear translocation of phosphorylated Smad2/3, a key step in TGF-β signaling, is suppressed in the spinal motor neurons of male transgenic mice carrying the mutant human AR. A similar finding was also observed in the motor neurons, but not in Purkinje cells, of SBMA patients. The pathogenic AR, the causative protein of SBMA, inhibits the transcription of TGF-β receptor type II (TβRII) via abnormal interactions with NF-Y and p300/CBP-associated factor. Furthermore, overexpression of TβRII dampens polyglutamine-induced cytotoxicity in a neuroblastoma cell line expressing the pathogenic AR. The present study thus indicates that disruption of TGF-β due to the transcriptional dysregulation of TβRII is associated with polyglutamine-induced motor neuron damage in SBMA.


Neuropathology and Applied Neurobiology | 2007

Pathogenesis and molecular targeted therapy of spinal and bulbar muscular atrophy

Hiroaki Adachi; Masahiro Waza; Masahisa Katsuno; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Spinal and bulbar muscular atrophy (SBMA) or Kennedys disease is a motor neurone disease characterized by muscle atrophy, weakness, contraction fasciculations and bulbar involvement. SBMA mainly affects males, while females are usually asymptomatic. SBMA is caused by expansion of a polyglutamine (polyQ)‐encoding CAG trinucleotide repeat in the androgen receptor (AR) gene. AR belongs to the heat shock protein 90 (Hsp90) client protein family. The histopathologic hallmarks of SBMA are diffuse nuclear accumulation and nuclear inclusions of the mutant AR with expanded polyQ in residual motor neurones in the brainstem and spinal cord as well as in some other visceral organs. There is increasing evidence that the ligand of AR and molecular chaperones play a crucial role in the pathogenesis of SBMA. The success of androgen deprivation therapy in SBMA mouse models has been translated into clinical trials. In addition, elucidation of its pathophysiology using animal models has led to the development of disease‐modifying drugs, that is, Hsp90 inhibitor and Hsp inducer, which inhibit the pathogenic process of neuronal degeneration. SBMA is a slowly progressive disease by nature. The degree of nuclear accumulation of mutant AR in scrotal skin epithelial cells was correlated with that in spinal motor neurones in autopsy specimens; therefore, the results of scrotal skin biopsy may be used to assess the efficacy of therapeutic trials. Clinical and pathological parameters that reflect the pathogenic process of SBMA should be extensively investigated.

Collaboration


Dive into the Masahiro Waza's collaboration.

Top Co-Authors

Avatar

Fumiaki Tanaka

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge