Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masahito Ikawa is active.

Publication


Featured researches published by Masahito Ikawa.


FEBS Letters | 1997

Green mice' as a source of ubiquitous green cells

Masaru Okabe; Masahito Ikawa; Katsuya Kominami; Tomoko Nakanishi; Yoshitake Nishimune

The green fluorescent protein (GFP) is responsible for the green bioluminescence of the jellyfish Aequorea victoria. Many classes of GFP mutants exist that display modified fluorescence spectra and an increased extinction coefficient. We produced transgenic mouse lines with an ‘enhanced’ GFP (EGFP) cDNA under the control of a chicken beta‐actin promoter and cytomegalovirus enhancer. All of the tissues from these transgenic lines, with the exception of erythrocytes and hair, were green under excitation light. The fluorescent nature of the cells from these transgenic mouse lines would facilitate their use in many kinds of cell transplantation experiments.


Genes & Development | 2008

DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes

Satomi Kuramochi-Miyagawa; Toshiaki Watanabe; Kengo Gotoh; Yasushi Totoki; Atsushi Toyoda; Masahito Ikawa; Noriko Asada; Kanako Kojima; Yuka Yamaguchi; Takashi W. Ijiri; Kenichiro Hata; En Li; Yoichi Matsuda; Tohru Kimura; Masaru Okabe; Yoshiyuki Sakaki; Hiroyuki Sasaki; Toru Nakano

Silencing of transposable elements occurs during fetal gametogenesis in males via de novo DNA methylation of their regulatory regions. The loss of MILI (miwi-like) and MIWI2 (mouse piwi 2), two mouse homologs of Drosophila Piwi, activates retrotransposon gene expression by impairing DNA methylation in the regulatory regions of the retrotransposons. However, as it is unclear whether the defective DNA methylation in the mutants is due to the impairment of de novo DNA methylation, we analyze DNA methylation and Piwi-interacting small RNA (piRNA) expression in wild-type, MILI-null, and MIWI2-null male fetal germ cells. We reveal that defective DNA methylation of the regulatory regions of the Line-1 (long interspersed nuclear elements) and IAP (intracisternal A particle) retrotransposons in the MILI-null and MIWI2-null male germ cells takes place at the level of de novo methylation. Comprehensive analysis shows that the piRNAs of fetal germ cells are distinct from those previously identified in neonatal and adult germ cells. The expression of piRNAs is reduced under MILI- and MIWI2-null conditions in fetal germ cells, although the extent of the reduction differs significantly between the two mutants. Our data strongly suggest that MILI and MIWI2 play essential roles in establishing de novo DNA methylation of retrotransposons in fetal male germ cells.


Development | 2004

Mili, a mammalian member of piwi family gene, is essential for spermatogenesis

Satomi Kuramochi-Miyagawa; Tohru Kimura; Takashi W. Ijiri; Taku Isobe; Noriko Asada; Yukiko Fujita; Masahito Ikawa; Naomi Iwai; Masaru Okabe; Wei Deng; Haifan Lin; Yoichi Matsuda; Toru Nakano

The piwi family genes, which are defined by conserved PAZ and Piwi domains, play important roles in stem cell self-renewal, RNA silencing, and translational regulation in various organisms. To reveal the function of the mammalian homolog of piwi, we produced and analyzed mice with targeted mutations in the Mili gene, which is one of three mouse homologs of piwi. Spermatogenesis in the MILI-null mice was blocked completely at the early prophase of the first meiosis, from the zygotene to early pachytene, and the mice were sterile. However, primordial germ cell development and female germ cell production were not disturbed. Furthermore, MILI bound to MVH, which is an essential factor during the early spermatocyte stage. The similarities in the phenotypes of the MILI- and MVH-deficient mice and in the physical binding properties of MILI and MVH indicate a functional association of these proteins in post-transcriptional regulation. These data indicate that MILI is essential for the differentiation of spermatocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA

Gustavo Tiscornia; Oded Singer; Masahito Ikawa; Inder M. Verma

We describe the use of lentiviral vectors expressing small interfering RNAs (siRNAs) to knock down the expression of specific genes in vitro and in vivo. A lentiviral vector capable of generating siRNA specific for GFP after transduction of 293T-GFP cell lines showed no GFP fluorescence. Furthermore, no GFP-specific RNA could be detected. When eggs from GFP-positive transgenic mice were transduced with lentivirus-expressing siGFP virus, reduced fluorescence could be seen in blastocysts. More interestingly, pups from F1 progeny, which expressed siGFP, showed considerably diminished fluorescence and decreased GFP. We propose that an approach of combining transgenesis by lentiviral vectors expressing siRNAs can be used successfully to generate a large number of mice in which the expression of a specific gene(s) can be down-regulated substantially. We believe that this approach of generating “knockdown” mice will aid in functional genomics.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos

Alexander Pfeifer; Masahito Ikawa; Yelena Dayn; Inder M. Verma

The introduction of foreign genes into early mouse embryos and embryonic stem (ES) cells is invaluable for the analysis of gene function and regulation in the living animal. The use of vectors derived from retroviruses as gene transfer vehicles in this setting has had limited success because of silencing of transgene expression. Here, we show that vectors derived from lentiviruses, which are complex retroviruses, can efficiently deliver genes to murine ES cells and that transgene expression is stable during proliferation of undifferentiated ES cells. The transgene is expressed during differentiation of ES cells in vitro (embryoid bodies) and in vivo (teratomas). Transfer of lentivector-transduced ES cells into blastocysts resulted in chimeric animals that expressed the transgene in multiple tissues. Embryos derived from crossings of chimeric mice expressed the transgene, indicating successful germ-line transmission. Infection of murine preimplantation embryos at morula stage with lentiviral vectors resulted in stable transduction and expression of the transgene in mouse embryos and in newborn mice. Finally, human ES cells were transduced by lentiviral vectors and expressed the transgene over several passages. Thus, lentiviral vectors represent a significant improvement over oncoretroviral vectors used previously for gene transfer into murine ES cells and preimplantation embryos. Ability to transfer foreign genes into human ES cells has potential relevance for the development of gene and cell-based therapies.


Nature | 2005

The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs

Naokazu Inoue; Masahito Ikawa; Ayako Isotani; Masaru Okabe

Representing the 60 trillion cells that build a human body, a sperm and an egg meet, recognize each other, and fuse to form a new generation of life. The factors involved in this important membrane fusion event, fertilization, have been sought for a long time. Recently, CD9 on the egg membrane was found to be essential for fusion, but sperm-related fusion factors remain unknown. Here, by using a fusion-inhibiting monoclonal antibody and gene cloning, we identify a mouse sperm fusion-related antigen and show that the antigen is a novel immunoglobulin superfamily protein. We have termed the gene Izumo and produced a gene-disrupted mouse line. Izumo -/- mice were healthy but males were sterile. They produced normal-looking sperm that bound to and penetrated the zona pellucida but were incapable of fusing with eggs. Human sperm also contain Izumo and addition of the antibody against human Izumo left the sperm unable to fuse with zona-free hamster eggs.


Mechanisms of Development | 1998

GENERATING GREEN FLUORESCENT MICE BY GERMLINE TRANSMISSION OF GREEN FLUORESCENT ES CELLS

Anna-Katerina Hadjantonakis; Marina Gertsenstein; Masahito Ikawa; Masaru Okabe; Andras Nagy

Green fluorescent protein (GFP) and its variants currently represent the only non-invasive markers available for labeling mammalian cells in culture or in a multicellular organism through transgenesis. To date this marker gene has been widely used in the study of many organisms, but as yet has not found large-scale application in mammals due to problems encountered with weak fluorescence and instability of the wild-type protein at higher temperatures. Recently, though, several mutants have been made in the wild-type (wt) GFP so as to improve its thermostability and fluorescence. EGFP (enhanced GFP) is one such wtGFP variant. As a first step in assessing the use of EGFP in ES cell-mediated strategies, we have established a mouse embryonic stem (ES) cell lines expressing EGFP, which can be propagated in culture, reintroduced into mice. or induced to differentiate in vitro, while still maintaining ubiquitous EGFP expression. From the results presented we can suggest that: 1) possible improvements in the efficiency of transgenic regimes requiring the germline transmission of ES cells by aggregation chimeras can be made by the preselection chimeric embryos at the blastocyst stage: (2) the expression of a noninvasive marker, driven by a promoter that is active during early postimplantation development, allows access to embryos during a window of embryonic development that has previously been difficult to investigate (3) the behavior of mutant ES cells can be followed with simple microscopic observation of chimeric embryos or adult animals comprising green fluorescent cells/tissues. and (4) intercrosses of F1 mice and subsequent generations of animals show that progeny can be genotyped by UV light, such that mice homozygous for the transgene can be distinguished from hemizygotes due to their increased fluorescence.


Nature Cell Biology | 2007

PGC7/Stella protects against DNA demethylation in early embryogenesis

Toshinobu Nakamura; Yoshikazu Arai; Hiroki Umehara; Masaaki Masuhara; Tohru Kimura; Hisaaki Taniguchi; Toshihiro Sekimoto; Masahito Ikawa; Yoshihiro Yoneda; Masaru Okabe; Satoshi Tanaka; Kunio Shiota; Toru Nakano

DNA methylation is an important means of epigenetic gene regulation and must be carefully controlled as a prerequisite for normal early embryogenesis. Although global demethylation occurs soon after fertilization, it is not evenly distributed throughout the genome. Genomic imprinting and epigenetic asymmetry between parental genomes, that is, delayed demethylation of the maternal genome after fertilization, are clear examples of the functional importance of DNA methylation. Here, we show that PGC7/Stella, a maternal factor essential for early development, protects the DNA methylation state of several imprinted loci and epigenetic asymmetry. After determining that PGC7/Stella binds to Ran binding protein 5 (RanBP5; a nuclear transport shuttle protein), mutant versions of the two proteins were used to examine exactly when and where PGC7/Stella functions within the cell. It is likely that PGC7/Stella protects the maternal genome from demethylation only after localizing to the nucleus, where it maintains the methylation of several imprinted genes. These results demonstrate that PGC7/Stella is indispensable for the maintenance of methylation involved in epigenetic reprogramming after fertilization.


Nature | 2007

Innate versus learned odour processing in the mouse olfactory bulb

Ko Kobayakawa; Reiko Kobayakawa; Yuichiro Oka; Takeshi Imai; Masahito Ikawa; Masaru Okabe; Toshio Ikeda; Shigeyoshi Itohara; Takefumi Kikusui; Kensaku Mori; Hitoshi Sakano

The mammalian olfactory system mediates various responses, including aversive behaviours to spoiled foods and fear responses to predator odours. In the olfactory bulb, each glomerulus represents a single species of odorant receptor. Because a single odorant can interact with several different receptor species, the odour information received in the olfactory epithelium is converted to a topographical map of multiple glomeruli activated in distinct areas in the olfactory bulb. To study how the odour map is interpreted in the brain, we generated mutant mice in which olfactory sensory neurons in a specific area of the olfactory epithelium are ablated by targeted expression of the diphtheria toxin gene. Here we show that, in dorsal-zone-depleted mice, the dorsal domain of the olfactory bulb was devoid of glomerular structures, although second-order neurons were present in the vacant areas. The mutant mice lacked innate responses to aversive odorants, even though they were capable of detecting them and could be conditioned for aversion with the remaining glomeruli. These results indicate that, in mice, aversive information is received in the olfactory bulb by separate sets of glomeruli, those dedicated for innate and those for learned responses.


Nature | 1997

The putative chaperone calmegin is required for sperm fertility

Masahito Ikawa; Ikuo Wada; Katsuya Kominami; Daisuke Watanabe; Kiyotaka Toshimori; Yoshitake Nishimune; Masaru Okabe

The proper folding of newly synthesized membrane proteins in the endoplasmic reticulum (ER) is required for the formation of functional mature proteins. Calnexin is a ubiquitous ER chaperone that plays a major role in quality control by retaining incompletely folded or misfolded proteins. In contrast to other known chaperones such as heat-shock proteins, BiP and calreticulin, calnexin is an integral membrane protein. Calmegin is a testis-specific ER protein that is homologous to calnexin. Here we show that calmegin binds to nascent polypeptides during spermatogenesis, and have analysed its physiological function by targeted disruption of its gene. Homozygous-null male mice are nearly sterile even though spermatogenesis is morphologically normal and mating is normal. In vitro, sperm from homozygous-null males do not adhere to the egg extracellular matrix (zona pellucida), and this defect may explain the observed infertility. These results suggest that calmegin functions as a chaperone for one or more sperm surface proteins that mediate the interactions between sperm and egg. The defective zona pellucida-adhesion phenotype of sperm from calmegin-deficient mice is reminiscent of certain cases of unexplained infertility in human males.

Collaboration


Dive into the Masahito Ikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge