Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidetoshi Hasuwa is active.

Publication


Featured researches published by Hidetoshi Hasuwa.


The EMBO Journal | 1998

A metalloprotease-disintegrin, MDC9/meltrin-gamma/ADAM9 and PKCdelta are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor.

Yasushi Izumi; Michinari Hirata; Hidetoshi Hasuwa; Ryo Iwamoto; Toshiyuki Umata; Kenji Miyado; Yoko Tamai; Tomohiro Kurisaki; Atsuko Sehara-Fujisawa; Shigeo Ohno; Eisuke Mekada

The ectodomains of many proteins located at the cell surface are shed upon cell stimulation. One such protein is the heparin‐binding EGF‐like growth factor (HB‐EGF) that exists in a membrane‐anchored form which is converted to a soluble form upon cell stimulation with TPA, an activator of protein kinase C (PKC). We show that PKCδ binds in vivo and in vitro to the cytoplasmic domain of MDC9/meltrin‐γ/ADAM9, a member of the metalloprotease–disintegrin family. Furthermore, the presence of constitutively active PKCδ or MDC9 results in the shedding of the ectodomain of proHB‐EGF, whereas MDC9 mutants lacking the metalloprotease domain, as well as kinase‐negative PKCδ, suppress the TPA‐induced shedding of the ectodomain. These results suggest that MDC9 and PKCδ are involved in the stimulus‐coupled shedding of the proHB‐EGF ectodomain.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function

Ryo Iwamoto; Satoru Yamazaki; Masanori Asakura; Seiji Takashima; Hidetoshi Hasuwa; Kenji Miyado; Satoshi Adachi; Masafumi Kitakaze; Koji Hashimoto; Gerhard Raab; Daisuke Nanba; Shigeki Higashiyama; Masatsugu Hori; Michael Klagsbrun; Eisuke Mekada

The heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family of growth factors that binds to and activates the EGF receptor (EGFR) and the related receptor tyrosine kinase, ErbB4. HB-EGF-null mice (HBdel/del) were generated to examine the role of HB-EGF in vivo. More than half of the HBdel/del mice died in the first postnatal week. The survivors developed severe heart failure with grossly enlarged ventricular chambers. Echocardiographic examination showed that the ventricular chambers were dilated and that cardiac function was diminished. Moreover, HBdel/del mice developed grossly enlarged cardiac valves. The cardiac valve and the ventricular chamber phenotypes resembled those displayed by mice lacking EGFR, a receptor for HB-EGF, and by mice conditionally lacking ErbB2, respectively. HB-EGF–ErbB interactions in the heart were examined in vivo by administering HB-EGF to WT mice. HB-EGF induced tyrosine phosphorylation of ErbB2 and ErbB4, and to a lesser degree, of EGFR in cardiac myocytes. In addition, constitutive tyrosine phosphorylation of both ErbB2 and ErbB4 was significantly reduced in HBdel/del hearts. It was concluded that HB-EGF activation of receptor tyrosine kinases is essential for normal heart function.


FEBS Letters | 2002

Small interfering RNA and gene silencing in transgenic mice and rats.

Hidetoshi Hasuwa; Kazuhiro Kaseda; Thorbjorg Einarsdottir; Masaru Okabe

After short duplexes of synthetic 21–23 nt RNAs (siRNA) were reported to be effective in silencing specific genes, a vector‐based approach for siRNAs was demonstrated in mammalian cultured cell lines. However, the effect of RNA interference (RNAi) on various differentiated cells in live animals remains unknown. In this report, we demonstrate that transgenically supplied siRNA can silence ubiquitously expressed enhanced green fluorescent protein in every part of the mouse and rat body. These results suggest that transgenic RNAi could function as an alternative method of gene silencing by applying homologous recombination to embryonic stem (ES) cells, and should be successful even in species where ES cell lines remain unestablished.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model.

Keiichi Kumasawa; Masahito Ikawa; Hiroyasu Kidoya; Hidetoshi Hasuwa; Tomoko Saito-Fujita; Yuka Morioka; Nobuyuki Takakura; Tadashi Kimura; Masaru Okabe

Preeclampsia is a relatively common pregnancy-related disorder. Both maternal and fetal lives will be endangered if it proceeds unabated. Recently, the placenta-derived anti-angiogenic factors, such as soluble fms-like tyrosine kinase-1 (sFLT1) and soluble endoglin (sENG), have attracted attention in the progression of preeclampsia. Here, we established a unique experimental model to test the role of sFLT1 in preeclampsia using a lentiviral vector-mediated placenta-specific expression system. The model mice showed hypertension and proteinuria during pregnancy, and the symptoms regressed after parturition. Intrauterine growth restriction was also observed. We further showed that pravastatin induced the VEGF-like angiogenic factor placental growth factor (PGF) and ameliorated the symptoms. We conclude that our experimental preeclamptic murine model phenocopies the human case, and the model identifies low-dose statins and PGF as candidates for preeclampsia treatment.


The Journal of Neuroscience | 2014

Optogenetic Manipulation of Activity and Temporally Controlled Cell-Specific Ablation Reveal a Role for MCH Neurons in Sleep/Wake Regulation

Tomomi Tsunematsu; Takafumi Ueno; Sawako Tabuchi; Ayumu Inutsuka; Kenji F. Tanaka; Hidetoshi Hasuwa; Thomas S. Kilduff; Akira Terao; Akihiro Yamanaka

Melanin-concentrating hormone (MCH) is a neuropeptide produced in neurons sparsely distributed in the lateral hypothalamic area. Recent studies have reported that MCH neurons are active during rapid eye movement (REM) sleep, but their physiological role in the regulation of sleep/wakefulness is not fully understood. To determine the physiological role of MCH neurons, newly developed transgenic mouse strains that enable manipulation of the activity and fate of MCH neurons in vivo were generated using the recently developed knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction system. The activity of these cells was controlled by optogenetics by expressing channelrhodopsin2 (E123T/T159C) or archaerhodopsin-T in MCH neurons. Acute optogenetic activation of MCH neurons at 10 Hz induced transitions from non-REM (NREM) to REM sleep and increased REM sleep time in conjunction with decreased NREM sleep. Activation of MCH neurons while mice were in NREM sleep induced REM sleep, but activation during wakefulness was ineffective. Acute optogenetic silencing of MCH neurons using archaerhodopsin-T had no effect on any vigilance states. Temporally controlled ablation of MCH neurons by cell-specific expression of diphtheria toxin A increased wakefulness and decreased NREM sleep duration without affecting REM sleep. Together, these results indicate that acute activation of MCH neurons is sufficient, but not necessary, to trigger the transition from NREM to REM sleep and that MCH neurons also play a role in the initiation and maintenance of NREM sleep.


Cell Reports | 2014

In Vivo Visualization of Subtle, Transient, and Local Activity of Astrocytes Using an Ultrasensitive Ca2+ Indicator

Kazunori Kanemaru; Hiroshi Sekiya; Ming Xu; Kaname Satoh; Nami Kitajima; Keitaro Yoshida; Yohei Okubo; Takuya Sasaki; Satoru Moritoh; Hidetoshi Hasuwa; Masaru Mimura; Kazuki Horikawa; Ko Matsui; Takeharu Nagai; Masamitsu Iino; Kenji F. Tanaka

Astrocytes generate local calcium (Ca(2+)) signals that are thought to regulate their functions. Visualization of these signals in the intact brain requires an imaging method with high spatiotemporal resolution. Here, we describe such a method using transgenic mice expressing the ultrasensitive ratiometric Ca(2+) indicator yellow Cameleon-Nano 50 (YC-Nano50) in astrocytes. In these mice, we detected a unique pattern of Ca(2+) signals. These occur spontaneously, predominantly in astrocytic fine processes, but not the cell body. Upon sensory stimulation, astrocytes initially responded with Ca(2+) signals at fine processes, which then propagated to the cell body. These observations suggest that astrocytic fine processes function as a high-sensitivity detector of neuronal activities. Thus, the method provides a useful tool for studying the activity of astrocytes in brain physiology and pathology.


Science | 2013

MiR-200b and miR-429 Function in Mouse Ovulation and Are Essential for Female Fertility

Hidetoshi Hasuwa; Jun Ueda; Masahito Ikawa; Masaru Okabe

Female Infertility Anovulation, the failure of a womans ovary to release an oocyte, is a major cause of female infertility. The mechanisms of ovulation have been studied extensively, with the hypothalamicpituitary axis serving as a key player in its regulation. Hasuwa et al. (p. 71, published online 13 June) describe a mechanism by which anovulation can be caused by the disruption of two microRNAs that are expressed in the pituitary gland. MicroRNAs regulate hormone synthesis in the pituitary and the production of oocytes. Ovulation in the mouse and other mammals is controlled by hormones secreted by the hypothalamo-pituitary-ovarian axis. We describe anovulation and infertility in female mice lacking the microRNAs miR-200b and miR-429. Both miRNAs are strongly expressed in the pituitary gland, where they suppress expression of the transcriptional repressor ZEB1. Eliminating these miRNAs, in turn, inhibits luteinizing hormone (LH) synthesis by repressing transcription of its β-subunit gene, which leads to lowered serum LH concentration, an impaired LH surge, and failure to ovulate. Our results reveal roles for miR-200b and miR-429, and their target the Zeb1 gene, in the regulation of mammalian reproduction. Thus, the hypothalamo-pituitary-ovarian axis was shown to require miR-200b and miR-429 to support ovulation.


Cell Reports | 2012

Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system.

Kenji F. Tanaka; Ko Matsui; Takuya Sasaki; Hiromi Sano; Shouta Sugio; Kai Fan; René Hen; Junichi Nakai; Yuchio Yanagawa; Hidetoshi Hasuwa; Masaru Okabe; Karl Deisseroth; Kazuhiro Ikenaka; Akihiro Yamanaka

Optogenetics has been enthusiastically pursued in recent neuroscience research, and the causal relationship between neural activity and behavior is becoming ever more accessible. Here, we established knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction (KENGE-tet) and succeeded in generating transgenic mice expressing a highly light-sensitive channelrhodopsin-2 mutant at levels sufficient to drive the activities of multiple cell types. This method requires two lines of mice: one that controls the pattern of expression and another that determines the protein to be produced. The generation of new lines of either type readily expands the repertoire to choose from. In addition to neurons, we were able to manipulate the activity of nonexcitable glial cells in vivo. This shows that our system is applicable not only to neuroscience but also to any biomedical study that requires understanding of how the activity of a selected population of cells propagates through the intricate organic systems.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Seminal vesicle protein SVS2 is required for sperm survival in the uterus

Natsuko Kawano; Naoya Araki; Kaoru Yoshida; Taku Hibino; Naoko Ohnami; Maako Makino; Seiya Kanai; Hidetoshi Hasuwa; Manabu Yoshida; Kenji Miyado; Akihiro Umezawa

Significance Male mice lacking seminal vesicle secretion 2 (SVS2) protein, which is a major component of seminal vesicle secretions, display prominently reduced fertility. However, their epididymal sperm are able to fertilize eggs normally in vitro, suggesting that SVS2 is only essential for in vivo fertilization. We demonstrate that infertility in SVS2−/− male mice is caused not only by failed copulatory plug formation but also by the disruption of ejaculated sperm in the uterus by uterus-derived cytotoxic factors. SVS2 acts to protect sperm against these uterus-derived cytotoxic factors by coating the sperm surface and preventing uterine attack. Thus, our results provide evidence that mammalian males have developed a protective strategy against female attack at the gamete level. In mammals, sperm migrate through the female reproductive tract to reach the egg; however, our understanding of this journey is highly limited. To shed light on this process, we focused on defining the functions of seminal vesicle secretion 2 (SVS2). SVS2−/− male mice produced sperm but were severely subfertile, and formation of a copulatory plug to cover the female genital opening did not occur. Surprisingly, even when artificial insemination was performed with silicon as a substitute for the plug, sperm fertility in the absence of SVS2 remained severely reduced because the sperm were already dead in the uterus. Thus, our results provide evidence that the uterus induces sperm cell death and that SVS2 protects sperm from uterine attack.


Journal of Biological Chemistry | 2000

Identification of Mammalian TOM22 as a Subunit of the Preprotein Translocase of the Mitochondrial Outer Membrane

Kazuko Saeki; Hiroyuki Suzuki; Makoto Tsuneoka; Maki Maeda; Ryo Iwamoto; Hidetoshi Hasuwa; Seiichiro Shida; Tsuyoshi Takahashi; Masao Sakaguchi; Toshiya Endo; Yoshiki Miura; Eisuke Mekada; Katsuyoshi Mihara

A mitochondrial outer membrane protein of ∼22 kDa (1C9-2) was purified from Vero cells assessing immunoreactivity with a monoclonal antibody, and the cDNA was cloned based on the partial amino acid sequence of the trypsin-digested fragments. 1C9-2 had 19–20% sequence identity to fungal Tom22, a component of the preprotein translocase of the outer membrane (the TOM complex) with receptor and organizer functions. Despite such a low sequence identity, both shared a remarkable structural similarity in the hydrophobicity profile, membrane topology in the Ncyt-Cin orientation through a transmembrane domain in the middle of the molecule, and the abundant acidic amino acid residues in the N-terminal domain. The antibodies against 1C9-2 inhibited the import of a matrix-targeted preprotein into isolated mitochondria. Blue native polyacrylamide gel electrophoresis of digitonin-solubilized outer membranes revealed that 1C9-2 is firmly associated with TOM40 in the ∼400-kDa complex, with a size and composition similar to those of the fungal TOM core complex. Furthermore, 1C9-2 complemented the defects of growth and mitochondrial protein import in Δtom22 yeast cells. Taken together, these results demonstrate that 1C9-2 is a functional homologue of fungal Tom22 and functions as a component of the TOM complex.

Collaboration


Dive into the Hidetoshi Hasuwa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge