Masakazu Kakuni
Tottori University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masakazu Kakuni.
Drug Metabolism and Disposition | 2012
Maki Hasegawa; Harunobu Tahara; Ryo Inoue; Masakazu Kakuni; Chise Tateno; Junko Ushiki
The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(−)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(−)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4.
PLOS ONE | 2015
Chise Tateno; Yosuke Kawase; Yoshimi Tobita; Satoko Hamamura; Hiroki Ohshita; Hiroshi Yokomichi; Harumi Sanada; Masakazu Kakuni; Akira Shiota; Yuha Kojima; Yuji Ishida; Hiroshi Shitara; Naoko A. Wada; Hiromi Tateishi; Masayuki Sudoh; Shin-ichiro Nagatsuka; Kou-ichi Jishage; Michinori Kohara
We have used homozygous albumin enhancer/promoter-driven urokinase-type plasminogen activator/severe combined immunodeficient (uPA/SCID) mice as hosts for chimeric mice with humanized livers. However, uPA/SCID mice show four disadvantages: the human hepatocytes (h-heps) replacement index in mouse liver is decreased due to deletion of uPA transgene by homologous recombination, kidney disorders are likely to develop, body size is small, and hemizygotes cannot be used as hosts as more frequent homologous recombination than homozygotes. To solve these disadvantages, we have established a novel host strain that has a transgene containing albumin promoter/enhancer and urokinase-type plasminogen activator cDNA and has a SCID background (cDNA-uPA/SCID). We applied the embryonic stem cell technique to simultaneously generate a number of transgenic lines, and found the line with the most appropriate levels of uPA expression—not detrimental but with a sufficiently damaged liver. We transplanted h-heps into homozygous and hemizygous cDNA-uPA/SCID mice via the spleen, and monitored their human albumin (h-alb) levels and body weight. Blood h-alb levels and body weight gradually increased in the hemizygous cDNA-uPA/SCID mice and were maintained until they were approximately 30 weeks old. By contrast, blood h-alb levels and body weight in uPA/SCID chimeric mice decreased from 16 weeks of age onwards. A similar decrease in body weight was observed in the homozygous cDNA-uPA/SCID genotype, but h-alb levels were maintained until they were approximately 30 weeks old. Microarray analyses revealed identical h-heps gene expression profiles in homozygous and hemizygous cDNA-uPA/SCID mice were identical to that observed in the uPA/SCID mice. Furthermore, like uPA/SCID chimeric mice, homozygous and hemizygous cDNA-uPA/SCID chimeric mice were successfully infected with hepatitis B virus and C virus. These results indicate that hemizygous cDNA-uPA/SCID mice may be novel and useful hosts for producing chimeric mice for use in future long-term studies, including hepatitis virus infection analysis or drug toxicity studies.
Drug Metabolism and Disposition | 2014
Thomas J. Bateman; Vijay Bhasker G. Reddy; Masakazu Kakuni; Yoshio Morikawa; Sanjeev Kumar
Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.
Journal of Hepatology | 2016
Naoki Yamamoto; Yusuke Sato; Tsubasa Munakata; Masakazu Kakuni; Chise Tateno; Takahiro Sanada; Yuichi Hirata; Shuko Murakami; Yasuhito Tanaka; Kazuaki Chayama; Hiroto Hatakeyama; Mamoru Hyodo; Hideyoshi Harashima; Michinori Kohara
BACKGROUND & AIMS Antiviral agents including entecavir (ETV) suppress the replication of the hepatitis B virus (HBV) genome in human hepatocytes, but they do not reduce the abundance of viral proteins. The present study focused on effectively reducing viral protein levels. METHODS We designed siRNAs (HBV-siRNA) that target consensus sequences in HBV genomes. To prevent the emergence of escaped mutant virus, we mixed three HBV-siRNAs (HBV-siRNAmix); the mixture was encapsulated in a novel pH-sensitive multifunctional envelope-type nanodevice (MEND), a hepatocyte-specific drug delivery system. Coagulation factor 7 siRNA was used to assess delivery and knockdown efficiencies of MEND/siRNA treatments in mice. The potency of MEND/HBV-siRNAmix was evaluated in primary human hepatocytes and in chimeric mice with humanized liver persistently infected with HBV. RESULTS Effective knockdown of targets, efficient delivery of siRNA, and liver-specific delivery were each observed with MEND. MEND/HBV-siRNA caused efficient reduction of HBsAg and HBeAg in vitro and in vivo. However, ETV treatment did not efficiently reduce HBsAg or HBeAg when compared with a single MEND/HBV-siRNAmix treatment. Furthermore, the suppressive effects of a single dose of MEND/HBV-siRNAmix persisted for 14days in vitro and in vivo. CONCLUSION We demonstrated that MEND/HBV-siRNA controlled HBV more efficiently than did ETV. Furthermore, the effect of a single dose of MEND/HBV-siRNA persisted for a long time. These results indicated that MEND/HBV-siRNA may be a promising novel HBV treatment that is more effective than reverse transcriptase inhibitors.
Gut | 2013
Tsunamasa Watanabe; Fuminaka Sugauchi; Yasuhito Tanaka; Kentaro Matsuura; Hiroshi Yatsuhashi; Shuko Murakami; Sayuki Iijima; Etsuko Iio; Masaya Sugiyama; Takashi Shimada; Masakazu Kakuni; Michinori Kohara; Masashi Mizokami
Objective Recent studies have demonstrated that genetic polymorphisms near the IL28B gene are associated with the clinical outcome of pegylated interferon α (peg-IFN-α) plus ribavirin therapy for patients with chronic hepatitis C virus (HCV). However, it is unclear whether genetic variations near the IL28B gene influence hepatic interferon (IFN)-stimulated gene (ISG) induction or cellular immune responses, lead to the viral reduction during IFN treatment. Design Changes in HCV-RNA levels before therapy, at day 1 and weeks 1, 2, 4, 8 and 12 after administering peg-IFN-α plus ribavirin were measured in 54 patients infected with HCV genotype 1. Furthermore, we prepared four lines of chimeric mice having four different lots of human hepatocytes containing various single nucleotide polymorphisms (SNP) around the IL28B gene. HCV infecting chimeric mice were subcutaneously administered with peg-IFN-α for 2 weeks. Results There were significant differences in the reduction of HCV-RNA levels after peg-IFN-α plus ribavirin therapy based on the IL28B SNP rs8099917 between TT (favourable) and TG/GG (unfavourable) genotypes in patients; the first-phase viral decline slope per day and second-phase slope per week in TT genotype were significantly higher than in TG/GG genotype. On peg-IFN-α administration to chimeric mice, however, no significant difference in the median reduction of HCV-RNA levels and the induction of antiviral ISG was observed between favourable and unfavourable human hepatocyte genotypes. Conclusions As chimeric mice have the characteristic of immunodeficiency, the response to peg-IFN-α associated with the variation in IL28B alleles in chronic HCV patients would be composed of the intact immune system.
International Journal of Molecular Sciences | 2013
Masakazu Kakuni; Chihiro Yamasaki; Asato Tachibana; Yasumi Yoshizane; Yuji Ishida; Chise Tateno
We performed in vivo and in vitro studies to determine the induction of human cytochrome P450 (CYP) using chimeric mice with humanized liver (PXB-mice®) and human hepatocytes isolated from the PXB-mice (PXB-cells), which were derived from the same donor. For the in vivo study, PXB-mice were injected with 3-methylcholanthrene (3-MC, 2 or 20 mg/kg) or rifampicin (0.1 or 10 mg/kg) for four days. For the in vitro study, PXB-cells were incubated with 3-MC (10, 50, or 250 ng/mL) or with rifampicin (5 or 25 μg/mL). The CYP1A1 and 1A2, and CYP3A4 mRNA expression levels increased significantly in the PXB-mouse livers with 20 mg/kg of 3-MC (Cmax, 12.2 ng/mL), and 10 mg/kg rifampicin (Cmax, 6.9 μg/mL), respectively. The CYP1A1 mRNA expression level increased significantly in PXB-cells with 250 ng/mL of 3-MC, indicating lower sensitivity than in vivo. The CYP1A2 and CYP3A4 mRNA expression levels increased significantly with 50 ng/mL of 3-MC, and 5 μg/mL of rifampicin, respectively, which indicated that the sensitivities were similar between in vivo and in vitro studies. In conclusion, PXB-mice and PXB-cells provide a robust model as an intermediate between in vivo and in vitro human metabolic enzyme induction studies.
Biopharmaceutics & Drug Disposition | 2016
Naoyuki Nakada; Akio Kawamura; Hidetaka Kamimura; Koya Sato; Yasuhiro Kazuki; Masakazu Kakuni; Masato Ohbuchi; Kota Kato; Chise Tateno; Mitsuo Oshimura; Takashi Usui
Chimeric mice with humanized livers (PXB mice) are used to investigate the metabolism and pharmacokinetics of drugs in humans. However, residual murine enzymatic activities derived from the liver and the presence of mouse small intestinal metabolism can hamper the prediction of human drug metabolism. Recently murine Cytochrome P450 3a gene knockout chimeric mice with humanized livers (Cyp3a KO CM) were developed. To evaluate the prediction of drug metabolism, nefazodone (NEF) was administered orally at 10 mg/kg to the following mouse strains: Cyp3a KO CM, murine Cyp3a gene knockout (Cyp3a KO), PXB and severe combined immunodeficiency (SCID) mice. Liquid chromatography‐mass spectrometry was used for metabolic profiling of plasma, urine and bile. The prediction of human metabolite levels such as hydroxy nefazodone (OH‐NEF), triazoledione form (TD), m‐chlorophenylpiperazine and dealkyl metabolites in Cyp3a KO CM was superior to that in Cyp3a KO, PXB or SCID mice. Further, clinical exposure levels of NEF, OH‐NEF and TD were reproduced in Cyp3a KO CM. In contrast, NEF was rapidly metabolized to TD in both PXB and SCID mice but not in Cyp3a KO mice, suggesting that murine CYP3A is involved in the elimination of NEF in these mice. These findings demonstrate that the metabolic profile of NEF in Cyp3a KO CM differs qualitatively and quantitatively from that in PXB mice due to the higher metabolic rate of NEF and its metabolites via murine CYP3A. Therefore Cyp3a KO CM might be useful in predicting the metabolic profiles of drug candidates in humans. Copyright
Drug Metabolism and Disposition | 2018
Masashi Uchida; Yoriko Tajima; Masakazu Kakuni; Yutaka Kageyama; Taro Okada; Eri Sakurada; Chise Tateno; Ryoji Hayashi
The influence of transporters on the pharmacokinetics of drugs is being increasingly recognized, and DDIs via transporters may be a risk factor for adverse events. Cyclosporine A, a strong OATP inhibitor, has been reported to increase the systemic exposure of rosuvastatin, an OATP substrate, by 7.1-fold in clinical studies. PXB mice are chimeric mice with humanized livers that are highly repopulated with human hepatocytes and have been widely used for drug discovery in drug metabolism and pharmacokinetics studies. In the present study, we examined in vivo and in vitro DDIs between rosuvastatin and cyclosporine A in PXB mice and fresh human hepatocytes (PXB cells) obtained from PXB mice. We initially investigated the active transport of rosuvastatin into PXB cells, and found concentration-dependent uptake with a Michaelis-Menten constant value of 4.0 μmol/l and a Vmax value of 4.63 pmol/min per 106 cells. Cyclosporine A inhibited the uptake of rosuvastatin with an IC50 value of 0.21 μmol/l. We then examined in vivo DDIs, and the exposure of orally administered rosuvastatin increased by 3.3-fold and 11-fold in PXB mice pretreated with 10 and 50 mg/kg cyclosporine A, whereas it increased by 2.5-fold and 6.2-fold when rosuvastatin was administered intravenously, in studies that were conducted for considering gastrointestinal DDIs. The liver-to-blood concentration ratio of rosuvastatin was dose-dependently decreased by pretreatment with cyclosporine A in PXB mice and SCID mice. Observed DDIs in vivo were considered to be reasonable based on the estimated concentrations of cyclosporine A at the inlet to the liver and in the liver tissues of both mice. In conclusion, our results indicate that PXB mice might be a useful tool for predicting human OATP-mediated DDIs in drug discovery, and its limitation due to the differences of gastrointestinal condition from human should also be considered.
Drug Metabolism and Pharmacokinetics | 2010
Chihiro Yamasaki; Miho Kataoka; Yumiko Kato; Masakazu Kakuni; Sadakazu Usuda; Yoshihiro Ohzone; Sunao Matsuda; Yasuhisa Adachi; Shin-ichi Ninomiya; Toshiyuki Itamoto; Toshimasa Asahara; Katsutoshi Yoshizato; Chise Tateno
Drug Metabolism and Pharmacokinetics | 2017
Chieri Fujino; Seigo Sanoh; Akihiko Shinagawa; Chihiro Yamasaki; Yuji Ishida; Masakazu Kakuni; Chise Tateno; Shigeru Ohta