Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaki Makise is active.

Publication


Featured researches published by Masaki Makise.


Molecular Microbiology | 2002

Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli

Masaki Makise; Shinji Mima; Takashi Katsu; Tomofusa Tsuchiya; Tohru Mizushima

In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility‐shift assay re‐vealed that acidic phospholipids inhibited formation of a DnaA–oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.


Journal of Biological Chemistry | 1998

Site-directed Mutational Analysis for the Membrane Binding of DnaA Protein IDENTIFICATION OF AMINO ACIDS INVOLVED IN THE FUNCTIONAL INTERACTION BETWEEN DnaA PROTEIN AND ACIDIC PHOSPHOLIPIDS

Masakazu Hase; Takeshi Yoshimi; Yuichi Ishikawa; Akiko Ohba; Lei Guo; Shinji Mima; Masaki Makise; Yoshihiro Yamaguchi; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, interacts with acidic phospholipids, such as cardiolipin, and its activity seems to be regulated by membrane binding in cells. In this study we introduced site-directed mutations at the positions of hydrophobic or basic amino acids which are conserved among various bacteria species and which are located in the putative membrane-binding region of DnaA protein (from Asp357 to Val374). All mutant DnaA proteins showed much the same ATP and ADP binding activity as that of the wild-type protein. The release of ATP bound to the mutant DnaA protein, in which three hydrophobic amino acids were mutated to hydrophilic ones, was stimulated by cardiolipin, as in the case of the wild-type protein. On the other hand, the release of ATP bound to another mutant DnaA protein, in which three basic amino acids were mutated to acidic ones, was not stimulated by cardiolipin. These results suggest not only that the region is a membrane-binding domain of DnaA protein but also that these basic amino acids are important for the binding and the ionic interaction between the basic amino acids and acidic residues of cardiolipin and is involved in the interaction between DnaA protein and cardiolipin.


Journal of Biological Chemistry | 2000

Identification of amino acids involved in the functional interaction between DnaA protein and acidic phospholipids

Masaki Makise; Shinji Mima; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be regulated through its binding to acidic phospholipids, such as cardiolipin. In our previous paper (Hase, M., Yoshimi, T., Ishikawa, Y., Ohba, A., Guo, L., Mima, S., Makise, M., Yamaguchi, Y., Tsuchiya, T., and Mizushima, T. (1998) J. Biol. Chem. 273, 28651–28656), we found that mutant DnaA protein (DnaA431), in which three basic amino acids (Arg360, Arg364, and Lys372) were mutated to acidic amino acids showed a decreased ability to interact with cardiolipin in vitro, suggesting that DnaA protein binds to cardiolipin through an ionic interaction. In this study, we construct three mutant dnaA genes each with a single mutation and examined the function of the mutant proteins in vitro and in vivo. All mutant proteins maintained activities for DNA replication and ATP binding. A mutant protein in which Lys372 was mutated to Glu showed the weakest interaction with cardiolipin among these three mutant proteins. Thus, Lys372 seems to play an important role in the interaction between DnaA protein and acidic phospholipids. Plasmid complementation analyses revealed that all these mutant proteins, including DnaA431 could function as an initiator for chromosomal DNA replication in vivo.


Journal of Biological Chemistry | 2001

Molecular Mechanism for Functional Interaction between DnaA Protein and Acidic Phospholipids IDENTIFICATION OF IMPORTANT AMINO ACIDS

Masaki Makise; Shinji Mima; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be reactivated from the ADP-bound form to its ATP-bound form through stimulation of ADP release by acidic phospholipids such as cardiolipin. We previously reported that two potential amphipathic helixes (Lys-327 to Ile-344 and Asp-357 to Val-374) of DnaA protein are involved in the functional interaction between DnaA and cardiolipin. In relation to one of these helixes (Asp-357 to Val-374), we demonstrated that basic amino acids in the helix, especially Lys-372, are vital for this interaction. In this study, we have identified an amino acid in the second potential amphipathic helix (Lys-327 to Ile-344), which would also appear to be involved in the interaction. We constructed three mutant dnaA genes with a single mutation (dnaAR328E, dnaAR334E, anddnaAR342E) and examined the function of the mutant proteins. DnaAR328E, but not DnaAR334E and DnaAR342E, was found to be more resistant to inhibition of its ATP binding activity by cardiolipin than the wild-type protein. The stimulation of ADP release from DnaAR328E by cardiolipin was also weaker than that observed with the other mutants and the wild-type protein. These results suggest that Arg-328 of DnaA protein is involved in the functional interaction of this protein with acidic phospholipids. We propose that acidic phospholipids bind to two basic amino acid residues (Arg-328 and Lys-372) of DnaA protein and change the higher order structure of its ATP-binding pocket, which in turn stimulates the release of ADP from the protein.


Journal of Biological Chemistry | 2004

Analysis on Origin Recognition Complex containing Orc5p with defective Walker A Motif

Naoko Takahashi; Yoshihiro Yamaguchi; Fumiko Yamairi; Masaki Makise; Hitomi Takenaka; Tomofusa Tsuchiya; Tohru Mizushima

Orc5p is one of six proteins that make up the origin recognition complex (ORC), a candidate initiator of chromosomal DNA replication in eukaryotes. To investigate the role of ATP binding to Orc5p in cells, we constructed orc5-A, a strain of Saccharomyces cerevisiae having a mutation in the Walker A motif of Orc5p (K43E). The strain showed temperature-sensitive growth. Incubation at a nonpermissive temperature (37 °C) caused accumulation of cells with nearly 2C DNA content. Overproduction of Orc4p, another subunit of ORC, suppresses this temperature sensitivity, but overproduction of other subunits did not. Overproduction of Orc4p did not suppress the temperature sensitivity of another orc5 mutant, orc5-1, whose mutation, L331P, is outside the ATP-binding motif. These results suggest that Orc4p is specifically involved in ATP binding to Orc5p itself or its function in DNA replication. Immunoblotting experiments revealed that in the orc5-A strain at a nonpermissive temperature, all ORC subunits gradually disappeared, suggesting that ORC5-A becomes degraded at nonpermissive temperatures. We therefore consider that ATP binding to Orc5p is involved in efficient ORC formation and that Orc4p is involved in this process.


Biochemical Journal | 1999

Involvement of Arg-328, Arg-334 and Arg-342 of DnaA protein in the functional interaction with acidic phospholipids

Yoshihiro Yamaguchi; Masakazu Hase; Masaki Makise; Shinji Mima; Takeshi Yoshimi; Yuichi Ishikawa; Tomofusa Tsuchiya; Tohru Mizushima

We reported previously that three basic amino acids (Arg-360, Arg-364 and Lys-372) of DnaA protein are essential for its functional interaction with cardiolipin. In this study, we examined the effect of mutation of some basic amino acids in a potential amphipathic helix (from Lys-327 to Ile-345) of DnaA protein on this interaction. ATP binding to the mutant DnaA protein, in which Arg-328, Arg-334 and Arg-342 were changed to acidic amino acids, was less inhibited by cardiolipin than that of the wild-type protein, as was the case for mutant DnaA protein with mutations of Arg-360, Arg-364 and Lys-372. A mutant DnaA protein with mutations of all six basic amino acids showed the most resistance to the inhibition of ATP binding by cardiolipin. These results suggest that Arg-328, Arg-334 and Arg-342, like Arg-360, Arg-364 and Lys-372, are also involved in the functional interaction between DnaA protein and acidic phospholipids.


Biochemical Journal | 2002

Biochemical analysis of DnaA protein with mutations in both Arg328 and Lys372.

Masaki Makise; Shinji Mima; Motohiro Koterasawa; Tomofusa Tsuchiya; Tohru Mizushima

The DnaA protein is the initiator of chromosomal DNA replication in Escherichia coli. Acidic phospholipids decrease its affinity for adenine nucleotides, and re-activate the ADP-bound form to the ATP-bound form. We have previously reported that two mutant forms, DnaAR328E and DnaAK372E, have decreased affinity for cardiolipin (CL). In the present study, we constructed a mutant DnaA protein, DnaA435, with both R328E and K372E, and compared its biochemical characteristics with those of DnaAR328E and DnaAK372E. DnaA435 could bind to oriC DNA, but did not bind ATP or ADP. In DnaA435, compared with DnaAR328E and DnaAK372E, CL caused less inhibition of oriC DNA binding, suggesting that amino acids R328 and K372 are involved in the interaction of DnaA with acidic phospholipids. DnaA435 could initiate DNA synthesis on oriC both in vivo and in vitro. Based on these results, we propose that ATP activates DnaA protein by changing its higher order structure around R328 and K372.


Molecular Microbiology | 2002

Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

Emi Suzuki; Taemi Kondo; Masaki Makise; Shinji Mima; Kenji Sakamoto; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature‐sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42°C (non‐permissive temperature) and at 37°C (semi‐permissive temperature), but not at 28°C (permissive temperature), compared with the wild‐type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature‐sensitive dnaA mutants showed similar results. On the other hand, a cold‐sensitive dnaAcos mutant, in which overinitiation of DNA replication occurs at low temperature (28°C), showed a higher level of unsaturation of fatty acids at 28°C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.


Biochemical Journal | 2002

Conserved hydrophobic amino acid residues in the N-terminal region of DnaA protein are involved in DnaA-DnaA interaction.

Shinji Mima; Masaki Makise; Motohiro Koterasawa; Tomofusa Tsuchiya; Tohru Mizushima

We previously reported that a leucine-zipper-like structure (I26, L33 and L40) located in the N-terminal region of DnaA is essential for the duplex opening at oriC by DnaA. In this study, we focused on three other conserved hydrophobic amino acid residues, L3, L10 and L17, and examined the function of DnaA proteins mutated in these amino acid residues. DnaA427 (L17S) and DnaA413 (L3S, L10S and L17S) were inactive for oriC DNA replication both in vitro and in vivo. Although these mutant DnaA proteins maintained their binding activities for both ATP and oriC, they were unable to induce the opening of duplex DNA at oriC. Glutathione-S-transferase (GST)-fused wild-type DnaA interacted with wild-type DnaA but not with DnaA427 and DnaA413. Based on these results, we propose that conserved hydrophobic amino acid residues in the N-terminal region of DnaA are involved in DnaA oligomerization, in which DnaA-DnaA interaction is required.


Journal of Biological Chemistry | 2003

Kinetics of ATP Binding to the Origin Recognition Complex of Saccharomyces cerevisiae

Masaki Makise; Hitomi Takenaka; Wakako Kuwae; Naoko Takahashi; Tomofusa Tsuchiya; Tohru Mizushima

Collaboration


Dive into the Masaki Makise's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge