Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinji Mima is active.

Publication


Featured researches published by Shinji Mima.


Cell Death & Differentiation | 2004

Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis

Shinji Tsutsumi; Tomomi Gotoh; Wataru Tomisato; Shinji Mima; Tatsuya Hoshino; Hyun Jung Hwang; Hitomi Takenaka; Tomofusa Tsuchiya; Masataka Mori; Tohru Mizushima

AbstractApoptosis induced by nonsteroidal anti-inflammatory drugs (NSAIDs) is involved not only in the production of NSAID-induced gastric lesions but also in the antitumor activity of these drugs. The endoplasmic reticulum (ER) stress response is a cellular mechanism that aids in protecting the ER against ER stressors and is involved in ER stressor-induced apoptosis. Here, we examine the relationship between this response and NSAID-induced apoptosis in cultured guinea-pig gastric mucosal cells. Exposure of cells to indomethacin, a commonly used NSAID, induced GRP78 as well as CHOP, a transcription factor involved in apoptosis. Three factors that positively regulate CHOP expression (ATF6, ATF4 and XBP-1) were activated and/or induced by indomethacin. NSAIDs other than indomethacin (diclofenac, ibuprofen and celecoxib) also induced CHOP. Monitoring of the transcriptional activities of ATF6 and CHOP by luciferase assay revealed that both were stimulated in the presence of indomethacin. Furthermore, indomethacin-induced apoptosis was suppressed in cultured guinea-pig gastric mucosal cells by expression of the dominant-negative form of CHOP, or in peritoneal macrophages from CHOP-deficient mice. These results suggest that ER stress response-related proteins, particularly CHOP, are involved in NSAID-induced apoptosis.


Oncogene | 2006

Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells

Shinji Tsutsumi; Takushi Namba; Ken Ichiro Tanaka; Yasuhiro Arai; Tomoaki Ishihara; Mayuko Aburaya; Shinji Mima; Tatsuya Hoshino; Tohru Mizushima

Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in cancer cells and this effect is involved in their antitumor activity. We recently demonstrated that NSAIDs upregulate GRP78, an endoplasmic reticulum (ER) chaperone, in gastric mucosal cells in primary culture. In the present study, induction of ER chaperones by NSAIDs and the effect of those chaperones on NSAID-induced apoptosis were examined in human gastric carcinoma cells. Celecoxib, an NSAID, upregulated ER chaperones (GRP78 and its cochaperones ERdj3 and ERdj4) but also C/EBP homologous transcription factor (CHOP), a transcription factor involved in apoptosis. Celecoxib also upregulated GRP78 in xenograft tumors, accompanying with the suppression of tumor growth in nude mice. Celecoxib caused phosphorylation of eukaryotic translation initiation factor 2 kinase (PERK) and eukaryotic initiation factor-2α (eIF2α) and production of activating transcription factor (ATF)4 mRNA. Suppression of ATF4 expression by small interfering RNA (siRNA) partially inhibited the celecoxib-dependent upregulation of GRP78. Celecoxib increased the intracellular Ca2+ concentration, while 1,2-bis(2-aminophenoxy)ethane-N,N,N′N′-tetraacetic acid, an intracellular Ca2+ chelator, inhibited the upregulation of GRP78 and ATF4. These results suggest that the Ca2+-dependent activation of the PERK-eIF2α-ATF4 pathway is involved in the upregulation of ER chaperones by celecoxib. Overexpression of GRP78 partially suppressed the apoptosis and induction of CHOP in the presence of celecoxib and this suppression was stimulated by coexpression of either ERdj3 or ERdj4. On the other hand, suppression of GRP78 expression by siRNA drastically stimulated cellular apoptosis and production of CHOP in the presence of celecoxib. These results show that upregulation of ER chaperones by celecoxib protects cancer cells from celecoxib-induced apoptosis, thus may decrease the potential antitumor activity of celecoxib.


Molecular Pharmacology | 2006

Up-regulation of 150-kDa oxygen-regulated protein by celecoxib in human gastric carcinoma cells

Takushi Namba; Tatsuya Hoshino; Ken Ichiro Tanaka; Shinji Tsutsumi; Tomoaki Ishihara; Shinji Mima; Keitarou Suzuki; Satoshi Ogawa; Tohru Mizushima

Induction of apoptosis by nonsteroidal anti-inflammatory drugs, such as celecoxib, is involved in their antitumor activity. An endoplasmic reticulum chaperone, 150-kDa oxygen-regulated protein (ORP150) is essential for the maintenance of cellular viability under hypoxia and is reported to be overexpressed in clinically isolated tumors. We here found that ORP150 was up-regulated by celecoxib in human gastric carcinoma cells. In conjunction with the suppression of tumor growth, orally administered celecoxib up-regulated ORP150 in xenograft tumors. Both the ATF4 and ATF6 pathways were activated by celecoxib, and suppression of ATF4 and ATF6 mRNA expression by small interfering RNA (siRNA) inhibited the celecoxib-dependent up-regulation of ORP150. Celecoxib administration led to an increase in the intracellular concentration of Ca2+, whereas 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-acetoxymethyl ester, an intracellular Ca2+ chelator, inhibited the up-regulation of ORP150 and the activation of the ATF4 and ATF6 pathways. These results suggest that these Ca2+-activated pathways are involved in the celecoxib-mediated up-regulation of ORP150. Clones overexpressing ORP150 were less susceptible to celecoxib-induced, but not staurosporine-induced, apoptosis and displayed less up-regulation of C/EBP homologous transcription factor (CHOP), a transcription factor with apoptosis-inducing activity. In contrast, siRNA for ORP150 stimulated apoptosis and expression of CHOP in the presence of celecoxib but not staurosporine. These results suggest that up-regulation of ORP150 in cancer cells inhibits celecoxib-induced apoptosis, thereby decreasing the potential antitumor activity of celecoxib.


Molecular Microbiology | 2002

Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli

Masaki Makise; Shinji Mima; Takashi Katsu; Tomofusa Tsuchiya; Tohru Mizushima

In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility‐shift assay re‐vealed that acidic phospholipids inhibited formation of a DnaA–oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.


Journal of Biological Chemistry | 1998

Site-directed Mutational Analysis for the Membrane Binding of DnaA Protein IDENTIFICATION OF AMINO ACIDS INVOLVED IN THE FUNCTIONAL INTERACTION BETWEEN DnaA PROTEIN AND ACIDIC PHOSPHOLIPIDS

Masakazu Hase; Takeshi Yoshimi; Yuichi Ishikawa; Akiko Ohba; Lei Guo; Shinji Mima; Masaki Makise; Yoshihiro Yamaguchi; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, interacts with acidic phospholipids, such as cardiolipin, and its activity seems to be regulated by membrane binding in cells. In this study we introduced site-directed mutations at the positions of hydrophobic or basic amino acids which are conserved among various bacteria species and which are located in the putative membrane-binding region of DnaA protein (from Asp357 to Val374). All mutant DnaA proteins showed much the same ATP and ADP binding activity as that of the wild-type protein. The release of ATP bound to the mutant DnaA protein, in which three hydrophobic amino acids were mutated to hydrophilic ones, was stimulated by cardiolipin, as in the case of the wild-type protein. On the other hand, the release of ATP bound to another mutant DnaA protein, in which three basic amino acids were mutated to acidic ones, was not stimulated by cardiolipin. These results suggest not only that the region is a membrane-binding domain of DnaA protein but also that these basic amino acids are important for the binding and the ionic interaction between the basic amino acids and acidic residues of cardiolipin and is involved in the interaction between DnaA protein and cardiolipin.


Journal of Biological Chemistry | 2009

Up-regulation of S100P expression by non-steroidal anti-inflammatory drugs and its role in anti-tumorigenic effects.

Takushi Namba; Takashi Homan; Tomoko Nishimura; Shinji Mima; Tatsuya Hoshino; Tohru Mizushima

Epidemiological studies have revealed that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer. Various mechanisms, including induction of apoptosis and inhibition of the growth and invasion of cancer cells, have been implicated in this anti-tumorigenic activity. In this study we focused on S100P, which is known to be overexpressed in clinically isolated tumors and which functions through both intracellular and extracellular mechanisms. We showed the up-regulation of S100P expression in human gastric carcinoma cells treated with various NSAIDs, including celecoxib. The celecoxib-mediated up-regulation of S100P was suppressed by the transfection of cells with small interfering RNA for activating transcription factor 4 (ATF4), a transcription factor involved in the endoplasmic reticulum stress response. Furthermore, deletion of ATF4 binding consensus sequence located in the promoter of the S100P gene resulted in inhibition of celecoxibmediated transcriptional activation of the gene. These results suggest that celecoxib up-regulates the expression of S100P through an ATF4-mediated endoplasmic reticulum stress response. Celecoxib inhibited the growth and induced apoptosis, and these actions could be either suppressed or stimulated by transfection of cells with S100P overexpression plasmid or small interfering RNA, respectively. Celecoxib also inhibited the invasive activity of the cells. Cromolyn, which inhibits the binding of S100P to its receptor, enhanced the celecoxib-mediated inhibition of cell invasion and growth but did not affect apoptosis. These results suggest that S100P affects apoptosis, cell growth, and invasion through either an intracellular or an extracellular mechanism and that the up-regulation of S100P expression by NSAIDs reduces their anti-tumorigenic activity.


Journal of Biological Chemistry | 2000

Identification of amino acids involved in the functional interaction between DnaA protein and acidic phospholipids

Masaki Makise; Shinji Mima; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be regulated through its binding to acidic phospholipids, such as cardiolipin. In our previous paper (Hase, M., Yoshimi, T., Ishikawa, Y., Ohba, A., Guo, L., Mima, S., Makise, M., Yamaguchi, Y., Tsuchiya, T., and Mizushima, T. (1998) J. Biol. Chem. 273, 28651–28656), we found that mutant DnaA protein (DnaA431), in which three basic amino acids (Arg360, Arg364, and Lys372) were mutated to acidic amino acids showed a decreased ability to interact with cardiolipin in vitro, suggesting that DnaA protein binds to cardiolipin through an ionic interaction. In this study, we construct three mutant dnaA genes each with a single mutation and examined the function of the mutant proteins in vitro and in vivo. All mutant proteins maintained activities for DNA replication and ATP binding. A mutant protein in which Lys372 was mutated to Glu showed the weakest interaction with cardiolipin among these three mutant proteins. Thus, Lys372 seems to play an important role in the interaction between DnaA protein and acidic phospholipids. Plasmid complementation analyses revealed that all these mutant proteins, including DnaA431 could function as an initiator for chromosomal DNA replication in vivo.


Carcinogenesis | 2008

NSAIDs suppress the expression of claudin-2 to promote invasion activity of cancer cells

Shinji Mima; Masaya Takehara; Hiroko Takada; Tomoko Nishimura; Tatsuya Hoshino; Tohru Mizushima

Non-steroidal anti-inflammatory drugs (NSAIDs) show chemopreventive effects; however, the precise molecular mechanism of these effects is still unclear. On the other hand, the expression of proteins that form tight junctions (TJs) (such as claudins) in clinically isolated tumors is frequently altered relative to normal tissue. We previously reported that NSAIDs upregulate the expression of claudin-4 and that this upregulation contributes to NSAID-dependent inhibition of both migration activity and anchorage-independent growth of cancer cells. In the current study, we have systematically examined the effects of various NSAIDs on the expression of various TJ proteins and have found that NSAIDs specifically and drastically inhibit the expression of claudin-2. Overexpression or suppression of claudin-2 expression caused stimulation or inhibition, respectively, of the invasion and migration activity of cancer cells. Furthermore, NSAIDs inhibited the invasion and migration activity of cancer cells and this inhibition was suppressed by overexpression of claudin-2. In contrast, neither cell growth nor apoptosis induced by lack of anchorage of cancer cells was affected by overexpression or suppression of expression of claudin-2. These results suggest that inhibition of claudin-2 expression by NSAIDs contributes to NSAID-dependent inhibition of invasion of cancer cells in vitro and that it may be involved in the chemopreventive effects of NSAIDs by inhibiting metastasis in vivo.


Molecular Pharmacology | 2005

Geranylgeranylacetone Protects Membranes against Nonsteroidal Anti-Inflammatory Drugs

Hironori Ushijima; Ken Ichiiro Tanaka; Miho Takeda; Takashi Katsu; Shinji Mima; Tohru Mizushima

Direct gastric mucosal cell damage mediated by nonsteroidal anti-inflammatory drugs (NSAIDs) is involved in the formation of NSAID-induced gastric lesions. We recently suggested that this direct cytotoxicity of NSAIDs is caused by their membrane-permeabilization activity. Geranylgeranylacetone (GGA), a clinically used antiulcer drug, can protect gastric mucosa against lesion formation mediated by NSAIDs. However, the mechanism by which this occurs is not fully understood. In this study, we show that GGA acts to stabilize membranes against NSAIDs. GGA suppressed NSAID-induced permeabilization of calcein-loaded liposomes and NSAID-induced stimulation of K+-efflux across the cytoplasmic membrane in cells. GGA was effective even when coadministered with NSAIDs and was also able to restore membrane fluidity that had been compromised by NSAIDs. This mechanism seems to play an important role in the antiulcer activity of GGA.


Journal of Biological Chemistry | 2001

Molecular Mechanism for Functional Interaction between DnaA Protein and Acidic Phospholipids IDENTIFICATION OF IMPORTANT AMINO ACIDS

Masaki Makise; Shinji Mima; Tomofusa Tsuchiya; Tohru Mizushima

DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be reactivated from the ADP-bound form to its ATP-bound form through stimulation of ADP release by acidic phospholipids such as cardiolipin. We previously reported that two potential amphipathic helixes (Lys-327 to Ile-344 and Asp-357 to Val-374) of DnaA protein are involved in the functional interaction between DnaA and cardiolipin. In relation to one of these helixes (Asp-357 to Val-374), we demonstrated that basic amino acids in the helix, especially Lys-372, are vital for this interaction. In this study, we have identified an amino acid in the second potential amphipathic helix (Lys-327 to Ile-344), which would also appear to be involved in the interaction. We constructed three mutant dnaA genes with a single mutation (dnaAR328E, dnaAR334E, anddnaAR342E) and examined the function of the mutant proteins. DnaAR328E, but not DnaAR334E and DnaAR342E, was found to be more resistant to inhibition of its ATP binding activity by cardiolipin than the wild-type protein. The stimulation of ADP release from DnaAR328E by cardiolipin was also weaker than that observed with the other mutants and the wild-type protein. These results suggest that Arg-328 of DnaA protein is involved in the functional interaction of this protein with acidic phospholipids. We propose that acidic phospholipids bind to two basic amino acid residues (Arg-328 and Lys-372) of DnaA protein and change the higher order structure of its ATP-binding pocket, which in turn stimulates the release of ADP from the protein.

Collaboration


Dive into the Shinji Mima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge