Masako Isokawa
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masako Isokawa.
Neuroscience Letters | 1991
Masako Isokawa; Michel F. Levesque
To investigate physiological properties of epileptogenic neurons in relation to epileptic pathology, intracellular recording and intracellular dye injection after the recording were obtained in dentate granule cells in slices prepared from excised human epileptic hippocampus in which selective cell degeneration has been documented. Markedly prolonged excitatory postsynaptic potentials (EPSPs) were recorded in 67% of the total neurons sampled during perforant path stimulation. Such EPSPs were voltage dependent and sensitive to the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid. Neurons that generated the increased N-methyl-D-aspartate (NMDA) responses were accompanied by abnormal dendritic morphology, i.e. loss of dendritic spines and development of beaded shafts. These findings suggest that an NMDA receptor-mediated toxic process that impinges specifically on dendritic components might take place in intractable epilepsy.
Experimental Brain Research | 1990
Charles L. Wilson; Masako Isokawa; Thomas L. Babb; Paul H. Crandall
SummaryConnections in the human mesial temporal lobe were investigated using brief, single pulses of electrical stimulation to evoke field potential responses in limbic structures of 74 epileptic patients. Eight specific areas within these structures were stereotactically targeted for study, including amygdala, entorhinal cortex, presubiculum, the anterior, middle and posterior levels of hippocampus and the middle and posterior levels of parahippocampal gyrus. These sites were studied systematically in order to quantitatively assess the response characteristics and reliability of responses evoked during stimulation of pathways connecting the areas. Specific measures included response probability, amplitude, latency and conduction velocities. The results are assumed to be representative of typical human limbic pathways since all recordings were made interictally and response probabilities across sites were not found to differ significantly between non-epileptogenic vs. identified epileptogenic regions. Field potentials ranging in amplitude from less than 0.1 to greater than 6.0 mV were evoked ipsilaterally, with mean onset latencies and conduction velocities ranging from 4.4 ms and 3.64 m/s in the perforant pathway connecting entorhinal cortex to anterior hippocampus to 24.8 ms and 0.88 m/s in the pathway connecting the amygdala and middle hippocampus. Stimulation of presubiculum and entorhinal cortex were most effective in evoking widespread responses in adjacent limbic recording sites, whereas posterior parahippocampal gyrus appeared functionally separated from other limbic sites since its probability of influencing ipsilateral sites was significantly lower than any other area. It was particularly noteworthy that stimulation did not evoke responses in any sites in contralateral hippocampal formation; even though a large number of sites were tested with bilateral implantation of homotopic electrodes. The absence of evidence for a functional contralateral limbic projection in the human brain stands in marked contrast to the anatomical and physiological evidence in lower animals for strong contralateral connections between subfields of the hippocampus via the hippocampal commissure. In addition, it correlates well with anatomical evidence for reduced hippocampal commissural connections in lower primates.
Epilepsy Research | 1998
Charles L. Wilson; S.U Khan; Jerome Engel; Masako Isokawa; Thomas L. Babb; Eric Behnke
Paired pulse stimulation has commonly been employed to investigate changes in excitability in epileptic hippocampal tissue employing the in vitro slice preparation. We used paired pulse stimulation in the intact temporal lobe of patients with temporal lobe seizures to compare the excitability of pathways in the epileptogenic hippocampus (located in the temporal lobe in which seizures arise) with those in the non-epileptogenic hippocampus of the contralateral temporal lobe (in the hemisphere to which seizures spread). A total of 20 patients with temporal lobe seizure onsets were studied during chronic depth electrode monitoring for seizure localization. Intracranial in vivo stimulation and recording sites included the hippocampus, entorhinal cortex, subicular cortex and parahippocampal gyrus. A comparison of all hippocampal pathways located in the temporal lobe where seizures typically started (n = 37) with those in temporal lobes contralateral to seizure onset (n = 53) showed significantly greater paired pulse suppression of population post-synaptic potentials on the epileptogenic side (F(1,87) = 6.1, P < 0.01). Similarly, mean paired pulse suppression was significantly greater for epileptogenic perforant path responses than for contralateral perforant path responses (F(1,13) = 7.5, P < 0.01). In contrast, local stimulation activating intrinsic associational pathways of the epileptogenic hippocampus showed decreased paired pulse suppression in comparison to the epileptogenic perforant path. These results may be a functional consequence of the formation of abnormal recurrent inhibitory and recurrent excitatory pathways in the sclerotic hippocampus. Enhanced inhibition may be adaptive in suppressing seizures during interictal periods, while abnormal recurrent excitatory circuits in the presence of enhanced inhibition may drive the hypersynchronization of principal neurons necessary for seizure genesis.
Neuroscience Letters | 1991
Masako Isokawa; Luiz E. Mello
Membrane properties and synaptic responses were analyzed in dentate granule cells in hippocampal slices prepared from pilocarpine-treated, chronically epileptic rats. Perforant path stimulation evoked a long-lasting excitatory postsynaptic potential (EPSP) with multiple spikes in a stimulus intensity-dependent fashion. The response was strongly facilitated by paired-pulse stimulation. Application of N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonovalerate (APV), not only blocked the paired pulse facilitation but also reduced the amplitude of the EPSP, indicating the involvement of the NMDA-receptor in synaptic responses of pilocarpine-treated dentate granule cells. Dendrites of these neurons showed loss of spines and beaded branches. These findings suggest that a degenerating dendrite could be a morphological substrate of neuronal hyperexcitability mediated by NMDA receptors, implicating possible in vivo glutamate toxicity as an underlying mechanism of chronic epilepsy.
Neuroscience Letters | 1998
Masako Isokawa
Dendritic degeneration is a common pathology in temporal lobe epilepsy and its animal models. However, little is known when and how the degeneration occurs. In the present study of the rat pilocarpine model, visualization of dendrites of the hippocampal dentate granule cells (DGCs) by biocytin revealed a generalized spine loss immediately after the acute seizure induced by pilocarpine. However, this generalized damage was followed by recovery and plastic changes in spine shape and density, which occurred 15-35 days after the initial acute seizure, i.e., during the period of establishing a chronic phase of this model with the induction of spontaneous seizures. The present finding suggests that initial acute seizures do not cause permanent damages in dendrites and spines of DGCs; instead, dendritic spines are dynamically maintained in the course of the establishment and maintenance of spontaneous seizures. Local dendritic spine degeneration, detected later in the chronic phase of epilepsy, is likely to have a separate cause from initial acute insults.
Epilepsia | 2000
Masako Isokawa
Summary: Purpose: To study when dendritic alteration can occur in the epileptic hippocampus and how it is influenced by epileptic axonal reorganization.
Epilepsy Research | 1991
Masako Isokawa; Giuliano Avanzini; David M. Finch; Thomas L. Babb; Michel F. Levesque
The neurophysiological properties of human dentate granule cells were studied in hippocampal slices prepared from patients undergoing surgical treatment for medically intractable temporal lobe epilepsy. In 24 neurons which were morphologically identified as dentate granule cells by intracellular staining with biocytin, there were 2 types of synaptic responses to perforant path stimulation: one showed an EPSP-IPSP sequence (n = 10) and the other showed prolonged EPSPs without accompanying hyperpolarizing IPSPs (n = 14). The prolonged EPSPs were markedly retarded by the application of an NMDA receptor antagonist, APV. Membrane properties of neurons showing the different classes of synaptic responses were similar in resting membrane potential (pooled average: -56.2 mV +/- 0.94 SEM) and spike amplitude (pooled average: 65.2 mV +/- 1.69 SEM). However, membrane resistance tended to be lower in neurons with prolonged EPSPs (31.8 M omega +/- 2.63 SEM) than in neurons that showed EPSP-IPSP responses (40.2 +/- 4.33) (P less than 0.05, Fisher). No spontaneous and/or evoked burst firing was observed. These data provide fuller information on the neurophysiological properties of human dentate granule cells in surgically resected epileptogenic hippocampus, implicating a role of NMDA receptor activation in human temporal lobe epilepsy.
Neuropharmacology | 2011
Jacquelynn N. Cuellar; Masako Isokawa
Increasing evidence indicates that the gut peptide ghrelin facilitates learning behavior and memory tasks. The present study demonstrates a cellular signaling mechanism of ghrelin in the hippocampus. Ghrelin stimulated CREB (cAMP response-element binding protein) through the activation of cAMP, protein kinase A (PKA), and PKA-dependent phosphorylation of NR1 subunit of the NMDA receptor. Ghrelin increased phalloidin-binding to F-actin suggesting CREB-induced gene expression might include reorganization of cytoskeletal proteins. The effect was blocked by the antagonist of the ghrelin receptor in spite of the receptors primary coupling to Gq proteins. We also discovered inhibitory effect of endocannabinoids on ghrelin-induced NR1 phosphorylation and CREB activity. 2-arachidonoylglycerol (2-AG) exerted its inhibitory effect in the Type 1 cannabinoid receptor (CB1R)-dependent manner, while anandamides inhibitory effect persisted in the presence of antagonists of CB1R and the vanilloid receptor, suggesting that anandamide might directly inhibit NMDA receptor/channels. Our findings may explain how ghrelin and endocannabinoids regulate hippocampal appetitive learning and plasticity.
Brain Research | 1998
Masako Isokawa
Visualization of neurons during patch clamp recordings from slices provides concurrent neuroanatomical information for physiological studies. Although, the technique becomes increasingly popular in immature brains, it has not been fully utilized in aged/adult and diseased brains including post-surgical human specimen. In the present study, glutamatergic modulation of GABAA receptor-mediated inhibition was investigated by whole-cell patch clamp recordings from visualized hippocampal dentate granule cells (DGCs) in slices that were prepared from surgically-removed human medial temporal lobe specimens and the rat pilocarpine model of temporal lobe epilepsy. GABAA receptor-mediated synaptic inhibition was recorded by isolating inhibitory postsynaptic currents (IPSCs) at a membrane potential of 0 mV where glutamatergic excitatory postsynaptic currents are near equilibrium. Peak amplitude of GABAA IPSC was not different between epileptic DGCs of both human and pilocarpine-treated rat hippocampi and those in the control rat DGCs. However, when high frequency stimulation (30 Hz for 10 s) preceded immediately before the generation of a GABAA IPSC, its peak amplitude was significantly reduced in epileptic DGCs. The application of an NMDA receptor antagonist prevented this decrease indicating that the high frequency stimulation activated the NMDA receptor and that this activation is involved in the induction of response-decrement of GABAA IPSCs in epileptic DGCs. In addition, intracellular application of a calcium chelator, BAPTA through a patch pipette was found effective in preventing the response-decrement of GABAA IPSCs suggesting that postsynaptic calcium-increase is also involved in this process. It is proposed that activation of the NMDA receptor in epileptic DGC may trigger an epileptogenic increase of intracellular free calcium, and this calcium-increase plays a crucial role for the induction of the response-decrement of GABAA IPSCs in epileptic hippocampus, which possibly leads to the initiation of epileptic seizures and ictal events.
Brain Research | 1997
Masako Isokawa
Dendritic morphology was studied in human hippocampal dentate granule cells (DGCs) by intracellularly-injecting biocytin in slice preparations that were obtained from temporal lobe epilepsy patients who underwent a surgical treatment for medically-intractable seizures. These DGCs had a fan-shaped dendritic domain of 54.1 degrees +/- 4.1 S.E.M. with 13.8 +/- 1.1 branch points and an estimated total dendritic length of 11535.6 microns +/- 3045.4. Dendritic spines were counted, and spine density was calculated to be 0.25 spines/microns +/- 0.16 S.E.M.. However, when the cells were categorized into two groups based on the presence or absence of the aberrant mossy fiber collaterals, the number of dendritic branches was significantly lower and spine density was significantly higher in DGCs that had aberrant collaterals. In particular, in the proximal dendrite, the spine density was 5 times higher in DGCs whose own mossy fibers were reorganized sending aberrant collaterals to this dendritic region (0.750 spines/microns +/- 0.203 S.E.M.: P < 0.01) than the DGCs without such collaterals (0.082 spines/microns +/- p.021 S.E.M.). These results suggest that the axonal reorganization may have an effect on the morphology of DGC dendrites directly or indirectly in such a way that dendritic structure and spines could be protected from seizure-induced excitotoxic cell damage.