Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masami Miyake is active.

Publication


Featured researches published by Masami Miyake.


Journal of Immunology | 2012

IFN-γ Elicits Macrophage Autophagy via the p38 MAPK Signaling Pathway

Takeshi Matsuzawa; Bae-Hoon Kim; Avinash R. Shenoy; Shigeki Kamitani; Masami Miyake; John D. MacMicking

Autophagy is a major innate immune defense pathway in both plants and animals. In mammals, this cascade can be elicited by cytokines (IFN-γ) or pattern recognition receptors (TLRs and nucleotide-binding oligomerization domain-like receptors). Many signaling components in TLR- and nucleotide-binding oligomerization domain-like receptor-induced autophagy are now known; however, those involved in activating autophagy via IFN-γ remain to be elucidated. In this study, we engineered macrophages encoding a tandem fluorescently tagged LC3b (tfLC3) autophagosome reporter along with stably integrated short hairpin RNAs to demonstrate IFN-γ–induced autophagy required JAK 1/2, PI3K, and p38 MAPK but not STAT1. Moreover, the autophagy-related guanosine triphosphatase Irgm1 proved dispensable in both stable tfLC3-expressing RAW 264.7 and tfLC3-transduced Irgm1−/− primary macrophages, revealing a novel p38 MAPK-dependent, STAT1-independent autophagy pathway that bypasses Irgm1. These unexpected findings have implications for understanding how IFN-γ–induced autophagy is mobilized within macrophages for inflammation and host defense.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Crystal structures reveal a thiol protease-like catalytic triad in the C-terminal region of Pasteurella multocida toxin

Kengo Kitadokoro; Shigeki Kamitani; Masayuki Miyazawa; Miyuki Hanajima-Ozawa; Aya Fukui; Masami Miyake; Yasuhiko Horiguchi

Pasteurella multocida toxin (PMT), one of the virulence factors produced by the bacteria, exerts its toxicity by up-regulating various signaling cascades downstream of the heterotrimeric GTPases Gq and G12/13 in an unknown fashion. Here, we present the crystal structure of the C-terminal region (residues 575–1,285) of PMT, which carries an intracellularly active moiety. The overall structure of C-terminal region of PMT displays a Trojan horse-like shape, composed of three domains with a “feet”-,“body”-, and “head”-type arrangement, which were designated C1, C2, and C3 from the N to the C terminus, respectively. The C1 domain, showing marked similarity in steric structure to the N-terminal domain of Clostridium difficile toxin B, was found to lead the toxin molecule to the plasma membrane. The C3 domain possesses the Cys–His–Asp catalytic triad that is organized only when the Cys is released from a disulfide bond. The steric alignment of the triad corresponded well to that of papain or other enzymes carrying Cys–His–Asp. PMT toxicities on target cells were completely abrogated when one of the amino acids constituting the triad was mutated. Our results indicate that PMT is an enzyme toxin carrying the cysteine protease-like catalytic triad dependent on the redox state and functions on the cytoplasmic face of the plasma membrane of target cells.


Journal of Biological Chemistry | 2010

Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction

Jun Kimura; Hiroyuki Abe; Shigeki Kamitani; Hirono Toshima; Aya Fukui; Masami Miyake; Yoichi Kamata; Yoshiko Sugita-Konishi; Shigeki Yamamoto; Yasuhiko Horiguchi

Clostridium perfringens enterotoxin (CPE), a causative agent of food poisoning, is a pore-forming toxin disrupting the selective permeability of the plasma membrane of target cells, resulting in cell death. We previously identified claudin as the cell surface receptor for CPE. Claudin, a component of tight junctions, is a tetratransmembrane protein and constitutes a large family of more than 20 members, not all of which serve as the receptor for CPE. The mechanism by which the toxin distinguishes the sensitive claudins is unknown. In this study, we localized the region of claudin responsible for interaction with CPE to the C-terminal part of the second extracellular loop and found that the isoelectric point of this region in sensitive claudins was higher than insensitive claudins. Amino acid substitutions to lower the pI resulted in reduced sensitivity to CPE among sensitive claudins, whereas substitutions to raise the pI endowed CPE-insensitive claudins with sensitivity. The steric structure of the claudin-binding domain of CPE reveals an acidic cleft surrounded by Tyr306, Tyr310, Tyr312, and Leu315, which were reported to be essential for interaction with the sensitive claudins. These results imply that an electrostatic attraction between the basic claudin region and the acidic CPE cleft is involved in their interaction.


Infection and Immunity | 2007

Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes Recruit a Junctional Protein, Zonula Occludens-1, to Actin Tails and Pedestals

Miyuki Hanajima-Ozawa; Takeshi Matsuzawa; Aya Fukui; Shigeki Kamitani; Hiroe Ohnishi; Akio Abe; Yasuhiko Horiguchi; Masami Miyake

ABSTRACT Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes induce localized actin polymerization at the cytoplasmic face of the plasma membrane or within the host cytoplasm, creating unique actin-rich structures termed pedestals or actin tails. The process is known to be mediated by the actin-related protein 2 and 3 (Arp2/3) complex, which in these cases acts downstream of neural Wiskott-Aldrich syndrome protein (N-WASP) or of a listerial functional homolog of WASP family proteins. Here, we show that zonula occludens-1 (ZO-1), a protein in the tight junctions of polarized epithelial cells, is recruited to actin tails and pedestals. Immunocytochemical analysis revealed that ZO-1 was stained most in the distal part of the actin-rich structures, and the incorporation was mediated by the proline-rich region of the ZO-1 molecule. The direct clustering of membrane-targeted Nck, which is known to activate the N-WASP-Arp2/3 pathway, triggered the formation of the ZO-1-associated actin tails. The results suggest that the activation of the Arp2/3 complex downstream of N-WASP or a WASP-related molecule is a key to the formation of the particular actin-rich structures that bind with ZO-1. We propose that an analysis of the recruitment on a molecular basis will lead to an understanding of how ZO-1 recognizes a distinctive actin-rich structure under pathophysiological conditions.


Journal of Biological Chemistry | 2010

Characterization of the Membrane-targeting C1 Domain in Pasteurella multocida Toxin

Shigeki Kamitani; Kengo Kitadokoro; Masayuki Miyazawa; Hirono Toshima; Aya Fukui; Hiroyuki Abe; Masami Miyake; Yasuhiko Horiguchi

Pasteurella multocida toxin (PMT) is a virulence factor responsible for the pathogenesis of some forms of pasteurellosis. The toxin activates Gq- and G12/13-dependent pathways through the deamidation of a glutamine residue in the α-subunit of heterotrimeric GTPases. We recently reported the crystal structure of the C terminus (residues 575–1285) of PMT (C-PMT), which is composed of three domains (C1, C2, and C3), and that the C1 domain is involved in the localization of C-PMT to the plasma membrane, and the C3 domain possesses a cysteine protease-like catalytic triad. In this study, we analyzed the membrane-targeting function of the C1 domain in detail. The C1 domain consists of seven helices of which the first four (residues 590–670), showing structural similarity to the N terminus of Clostridium difficile toxin B, were found to be involved in the recruitment of C-PMT to the plasma membrane. C-PMT lacking these helices (C-PMT ΔC1(4H)) neither localized to the plasma membrane nor stimulated the Gq/12/13-dependent signaling pathways. When the membrane-targeting property was complemented by a peptide tag with an N-myristoylation motif, C-PMT ΔC1(4H) recovered the PMT activity. Direct binding between the C1 domain and liposomes containing phospholipids was evidenced by surface plasmon resonance analyses. These results indicate that the C1 domain of C-PMT functions as a targeting signal for the plasma membrane.


Journal of Biological Chemistry | 2004

Bordetella dermonecrotic toxin undergoes proteolytic processing to be translocated from a dynamin-related endosome into the cytoplasm in an acidification-independent manner

Takeshi Matsuzawa; Aya Fukui; Takashige Kashimoto; Kaori Nagao; Kiyomasa Oka; Masami Miyake; Yasuhiko Horiguchi

Bordetella pertussis dermonecrotic toxin (DNT), which activates intracellular Rho GTPases, is a single chain polypeptide composed of an N-terminal receptor-binding domain and a C-terminal enzymatic domain. We found that DNT was cleaved by furin, a mammalian endoprotease, on the C-terminal side of Arg44, which generates an N-terminal fragment almost corresponding to the receptor-binding domain and a C-terminal remainder (ΔB) containing the enzymatic domain. These two fragments remained associated even after the cleavage and made a nicked form. DNT mutants insensitive to furin had no cellular effect, whereas the nicked toxin was much more potent than the intact form, indicating that the nicking by furin was a prerequisite for action. ΔB, but not the nicked toxin, associated with artificial liposomes and activated Rho in cells resistant to DNT because of a lack of surface receptor. These results imply that ΔB, dissociated from the binding domain, fully possesses the ability to enter the cytoplasm across the lipid bilayer membrane. The translocation ability of ΔB was found to be attributable to the N-terminal region encompassing amino acids 45-166, including a putative transmembrane domain. Pharmacological analyses with various reagents disturbing vesicular trafficking revealed that the translocation requires neither the acidification of the endosomes nor retrograde vesicular transport to deeper organelles, although DNT appeared to be internalized via a dynamin-dependent endocytosis. We conclude that DNT binds to its receptor and is internalized into endosomes where the proteolytic processing occurs. ΔB, liberated from the binding domain after the processing, begins to translocate the enzymatic domain into the cytoplasm.


Fems Microbiology Letters | 2008

The morphological changes in cultured cells caused by Bordetella pertussis adenylate cyclase toxin

Hiroe Ohnishi; Masami Miyake; Shigeki Kamitani; Yasuhiko Horiguchi

Bordetella pertussis is the causative agent for human whooping cough. It was found that Bordetella pertussis infection caused a change in shape from flat to round in L2 cells, which are derived from rat type 2 alveolar cells. This phenomenon was reproduced using the culture supernatant of B. pertussis, and bacterium-free adenylate cyclase toxin (CyaA) was identified as the factor responsible. A purified preparation of wild-type CyaA but not an enzyme-dead mutant caused the cell rounding. It was examined whether CyaA causes similar morphological changes in various cultured cell lines. L2, EBL, HEK293T, MC3T3-E1, NIH 3T3, and Vero cells were rounded by the toxin whereas Caco-2, Eph4, and MDCK cells were not, although all these cells showed a significant elevation of the intracellular cAMP level in response to CyaA treatment, which indicates that there is no quantitative correlation between the rounding phenotype and the intracellular cAMP level. CyaA has been believed to target various immunocompetent cells and support the establishment of the bacterial infection by subverting the host immune responses. The possibility that CyaA may also affect tissue cells such as respiratory epithelial cells and may be involved in the pathogenesis of the bacterial infection is also indicated.


Applied and Environmental Microbiology | 2016

Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness.

Mayo Yasugi; Daisuke Okuzaki; Ritsuko Kuwana; Hiromu Takamatsu; Masaya Fujita; Mahfuzur R. Sarker; Masami Miyake

ABSTRACT Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. IMPORTANCE Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens.


Microbial Pathogenesis | 2015

In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production

Mayo Yasugi; Yuki Sugahara; Hidenobu Hoshi; Kaori Kondo; Prabhat K. Talukdar; Mahfuzur R. Sarker; Shigeki Yamamoto; Yoichi Kamata; Masami Miyake

Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity.


Microbiology and Immunology | 2016

Nitrate salts suppress sporulation and production of enterotoxin in Clostridium perfringens strain NCTC8239

Mayo Yasugi; Keisuke Otsuka; Masami Miyake

Clostridium perfringens type A is a common source of food‐borne illness in humans. Ingested vegetative cells sporulate in the small intestinal tract and in the process produce C. perfringens enterotoxin (CPE). Although sporulation plays a critical role in the pathogenesis of food‐borne illness, the molecules triggering/inhibiting sporulation are still largely unknown. It has previously been reported by our group that sporulation is induced in C. perfringens strain NCTC8239 co‐cultured with Caco‐2 cells in Dulbeccos Modified Eagle Medium (DMEM). In contrast, an equivalent amount of spores was not observed when bacteria were co‐cultured in Roswell Park Memorial Institute‐1640 medium (RPMI). In the present study it was found that, when these two media are mixed, RPMI inhibits sporulation and CPE production induced in DMEM. When a component of RPMI was added to DMEM, it was found that calcium nitrate (Ca[NO3]2) significantly inhibits sporulation and CPE production. The number of spores increased when Ca(NO3)2‐deficient RPMI was used. The other nitrate salts significantly suppressed sporulation, whereas the calcium salts used did not. qPCR revealed that nitrate salts increased expression of bacterial nitrate/nitrite reductase. Furthermore, it was found that nitrite and nitric oxide suppress sporulation. In the sporulation stages, Ca(NO3)2 down‐regulated the genes controlled by Spo0A, a master regulator of sporulation, but not spo0A itself. Collectively, these results indicate that nitrate salts suppress sporulation and CPE production by down‐regulating Spo0A‐regulated genes in C. perfringens strain NCTC8239. Nitrate reduction may be associated with inhibition of sporulation.

Collaboration


Dive into the Masami Miyake's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mayo Yasugi

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kengo Kitadokoro

Kyoto Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hideyo Sakanoue

Osaka Prefecture University

View shared research outputs
Researchain Logo
Decentralizing Knowledge