Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mayo Yasugi is active.

Publication


Featured researches published by Mayo Yasugi.


PLOS Pathogens | 2013

Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

Mayo Yasugi; Ritsuko Kubota-Koketsu; Akifumi Yamashita; Norihito Kawashita; Anariwa Du; Tadahiro Sasaki; Mitsuhiro Nishimura; Ryo Misaki; Motoki Kuhara; Naphatsawan Boonsathorn; Kazuhito Fujiyama; Yoshinobu Okuno; Takaaki Nakaya; Kazuyoshi Ikuta

Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus.


PLOS ONE | 2012

Frequency of D222G and Q223R Hemagglutinin Mutants of Pandemic (H1N1) 2009 Influenza Virus in Japan between 2009 and 2010

Mayo Yasugi; Shota Nakamura; Tomo Daidoji; Norihito Kawashita; Ririn Ramadhany; Cheng Song Yang; Teruo Yasunaga; Tetsuya Iida; Toshihiro Horii; Kazuyoshi Ikuta; Kazuo Takahashi; Takaaki Nakaya

Background In April 2009, a novel swine-derived influenza A virus (H1N1pdm) emerged and rapidly spread around the world, including Japan. It has been suggested that the virus can bind to both 2,3- and 2,6-linked sialic acid receptors in infected mammals, in contrast to contemporary seasonal H1N1 viruses, which have a predilection for 2,6-linked sialic acid. Methods/Results To elucidate the existence and transmissibility of α2,3 sialic acid-specific viruses in H1N1pdm, amino acid substitutions within viral hemagglutinin molecules were investigated, especially D187E, D222G, and Q223R, which are related to a shift from human to avian receptor specificity. Samples from individuals infected during the first and second waves of the outbreak in Japan were examined using a high-throughput sequencing approach. In May 2009, three specimens from mild cases showed D222G and/or Q223R substitutions in a minor subpopulation of viruses infecting these individuals. However, the substitutions almost disappeared in the samples from five mild cases in December 2010. The D187E substitution was not widespread in specimens, even in May 2009. Conclusions These results suggest that α2,3 sialic acid-specific viruses, including G222 and R223, existed in humans as a minor population in the early phase of the pandemic, and that D222 and Q223 became more dominant through human-to-human transmission during the first and second waves of the epidemic. These results are consistent with the low substitution rates identified in seasonal H1N1 viruses in 2008.


PLOS ONE | 2013

Emerging antigenic variants at the antigenic site Sb in pandemic A(H1N1)2009 influenza virus in Japan detected by a human monoclonal antibody.

Mayo Yasugi; Ritsuko Kubota-Koketsu; Akifumi Yamashita; Norihito Kawashita; Anariwa Du; Ryo Misaki; Motoki Kuhara; Naphatsawan Boonsathorn; Kazuhito Fujiyama; Yoshinobu Okuno; Takaaki Nakaya; Kazuyoshi Ikuta

The swine-origin pandemic A(H1N1)2009 virus, A(H1N1)pdm09, is still circulating in parts of the human population. To monitor variants that may escape from vaccination specificity, antigenic characterization of circulating viruses is important. In this study, a hybridoma clone producing human monoclonal antibody against A(H1N1)pdm09, designated 5E4, was prepared using peripheral lymphocytes from a vaccinated volunteer. The 5E4 showed viral neutralization activity and inhibited hemagglutination. 5E4 escape mutants harbored amino acid substitutions (A189T and D190E) in the hemagglutinin (HA) protein, suggesting that 5E4 recognized the antigenic site Sb in the HA protein. To study the diversity of Sb in A(H1N1)pdm09, 58 viral isolates were obtained during the 2009/10 and 2010/11 winter seasons in Osaka, Japan. Hemagglutination-inhibition titers were significantly reduced against 5E4 in the 2010/11 compared with the 2009/10 samples. Viral neutralizing titers were also significantly decreased in the 2010/11 samples. By contrast, isolated samples reacted well to ferret anti-A(H1N1)pdm09 serum from both seasons. Nonsynonymous substitution rates revealed that the variant Sb and Ca2 sequences were being positively selected between 2009/10 and 2010/11. In 7,415 HA protein sequences derived from GenBank, variants in the antigenic sites Sa and Sb increased significantly worldwide from 2009 to 2013. These results indicate that the antigenic variants in Sb are likely to be in global circulation currently.


Journal of Virology | 2016

Influenza A Virus-Induced Expression of a GalNAc Transferase, GALNT3, via MicroRNAs Is Required for Enhanced Viral Replication

Shoko Nakamura; Masayuki Horie; Tomo Daidoji; Tomoyuki Honda; Mayo Yasugi; Atsushi Kuno; Toshihisa Komori; Daisuke Okuzaki; Hisashi Narimatsu; Takaaki Nakaya; Keizo Tomonaga

ABSTRACT Influenza A virus (IAV) affects the upper and lower respiratory tracts and rapidly induces the expression of mucins, which are common O-glycosylated proteins, on the epithelial surfaces of the respiratory tract. Although mucin production is associated with the inhibition of virus transmission as well as characteristic clinical symptoms, little is known regarding how mucins are produced on the surfaces of respiratory epithelial cells and how they affect IAV replication. In this study, we found that two microRNAs (miRNAs), miR-17-3p and miR-221, which target GalNAc transferase 3 (GALNT3) mRNA, are rapidly downregulated in human alveolar basal epithelial cells during the early stage of IAV infection. We demonstrated that the expression of GALNT3 mRNA is upregulated in an IAV replication-dependent fashion and leads to mucin production in bronchial epithelial cells. A lectin microarray analysis revealed that the stable expression of GALNT3 by human alveolar basal epithelial cells induces mucin-type O-glycosylation modifications similar to those present in IAV-infected cells, suggesting that GALNT3 promotes mucin-type O-linked glycosylation in IAV-infected cells. Notably, analyses using short interfering RNAs and miRNA mimics showed that GALNT3 knockdown significantly reduces IAV replication. Furthermore, IAV replication was markedly decreased in embryonic fibroblast cells obtained from galnt3-knockout mice. Interestingly, IAV-infected galnt3-knockout mice exhibited high mortality and severe pathological alterations in the lungs compared to those of wild-type mice. Our results demonstrate not only the molecular mechanism underlying rapid mucin production during IAV infection but also the contribution of O-linked glycosylation to the replication and propagation of IAV in lung cells. IMPORTANCE Viral infections that affect the upper or lower respiratory tracts, such as IAV, rapidly induce mucin production on the epithelial surfaces of respiratory cells. However, the details of how mucin-type O-linked glycosylation is initiated by IAV infection and how mucin production affects viral replication have not yet been elucidated. In this study, we show that levels of two miRNAs that target the UDP-GalNAc transferase GALNT3 are markedly decreased during the early stage of IAV infection, resulting in the upregulation of GALNT3 mRNA. We also demonstrate that the expression of GALNT3 initiates mucin production and affects IAV replication in infected cells. This is the first report demonstrating the mechanism underlying the miRNA-mediated initiation of mucin-type O-glycosylation in IAV-infected cells and its role in viral replication. Our results have broad implications for understanding IAV replication and suggest a strategy for the development of novel anti-influenza approaches.


Journal of Biological Chemistry | 2015

Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH

Tomo Daidoji; Yohei Watanabe; Madiha S. Ibrahim; Mayo Yasugi; Hisataka Maruyama; Taisuke Masuda; Fumihito Arai; Tomoyuki Ohba; Ayae Honda; Kazuyoshi Ikuta; Takaaki Nakaya

Background: The mechanism of H5N1 pathogenesis in humans remains unclear. Results: SAEC-T clones were poorly susceptible to previously circulating avian influenza viruses but were completely susceptible to H5N1. Conclusion: Infectivity depends on a delicate balance between acid stability of viral hemagglutinin and endosomal pH in infected cells. Significance: These findings could explain why H5N1 is directly transmitted to humans from birds, resulting in serious illness. The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.


Applied and Environmental Microbiology | 2016

Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness.

Mayo Yasugi; Daisuke Okuzaki; Ritsuko Kuwana; Hiromu Takamatsu; Masaya Fujita; Mahfuzur R. Sarker; Masami Miyake

ABSTRACT Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. IMPORTANCE Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens.


Microbial Pathogenesis | 2015

In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production

Mayo Yasugi; Yuki Sugahara; Hidenobu Hoshi; Kaori Kondo; Prabhat K. Talukdar; Mahfuzur R. Sarker; Shigeki Yamamoto; Yoichi Kamata; Masami Miyake

Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity.


Biochemical and Biophysical Research Communications | 2014

Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses

Yang Pan; Tadahiro Sasaki; Ritsuko Kubota-Koketsu; Yuji Inoue; Mayo Yasugi; Akifumi Yamashita; Ririn Ramadhany; Yasuha Arai; Anariwa Du; Naphatsawan Boonsathorn; Madiha S. Ibrahim; Tomo Daidoji; Takaaki Nakaya; Kenichiro Ono; Yoshinobu Okuno; Kazuyoshi Ikuta; Yohei Watanabe

Influenza viruses are a continuous threat to human public health because of their ability to evolve rapidly through genetic drift and reassortment. Three human monoclonal antibodies (HuMAbs) were generated in this study, 1H11, 2H5 and 5G2, and they cross-neutralize a diverse range of group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H5N1 and H9N2. The three HuMAbs were prepared by fusing peripheral blood lymphocytes from an H1N1pdm-infected patient with a newly developed fusion partner cell line, SPYMEG. All the HuMAbs had little hemagglutination inhibition activity but had strong membrane-fusion inhibition activity against influenza viruses. A protease digestion assay showed the HuMAbs targeted commonly a short α-helix region in the stalk of the hemagglutinin. Furthermore, Ile45Phe and Glu47Gly double substitutions in the α-helix region made the HA unrecognizable by the HuMAbs. These two amino acid residues are highly conserved in the HAs of H1N1, H5N1 and H9N2 viruses. The HuMAbs reported here may be potential candidates for the development of therapeutic antibodies against group 1 influenza viruses.


Frontiers in Microbiology | 2012

Tropism of Pandemic 2009 H1N1 Influenza a Virus.

Ririn Ramadhany; Mayo Yasugi; Shota Nakamura; Tomo Daidoji; Yohei Watanabe; Kazuo Takahashi; Kazuyoshi Ikuta; Takaaki Nakaya

Substitutions at the receptor-binding site of the pandemic H1N1 2009 influenza A virus (H1N1pdm) hemagglutinin (HA) gene may be critical in determining whether a virus binds to human or avian receptors. Previous reports suggest that HA Gly222 and/or Arg223 allow viruses to bind preferentially to the α2,3-linked sialic acid found in avian species. We also demonstrated that serial passaging of influenza A virus in embryonated chicken eggs increased viral growth 32- to 64-fold, coincident with the increased prevalence of Gly222 or Arg223 in HA protein (Yasugi et al., 2012). In this study, we showed that the minor genotype of α2,3-linkage-tropic viruses in upper airways became dominant after passaging through chicken eggs. Viruses possessing HA containing N125D-Q223R, N125D-D187E-Q223R, K119N-D222G, and K119N-N129S-D222G, were detected in both clinical specimens and egg-passaged samples. These results might suggest that egg-adapted viruses, likely represented by α2,3-linkage-tropic virus, were also present in human upper airways as a minor population and transmitted in humans during the outbreak of H1N1pdm.


Biochemical and Biophysical Research Communications | 2014

A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

Naphatsawan Boonsathorn; Sumolrat Panthong; Sarawut Koksunan; Malinee Chittaganpitch; Siripaporn Phuygun; Sunthareeya Waicharoen; Apichai Prachasupap; Tadahiro Sasaki; Ritsuko Kubota-Koketsu; Mayo Yasugi; Ken-ichiro Ono; Yasuha Arai; Takeshi Kurosu; Pathom Sawanpanyalert; Kazuyoshi Ikuta; Yohei Watanabe

Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutinin (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.

Collaboration


Dive into the Mayo Yasugi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaaki Nakaya

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomo Daidoji

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naphatsawan Boonsathorn

Japan International Cooperation Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohei Watanabe

Kyoto Prefectural University of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge