Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masao Doi is active.

Publication


Featured researches published by Masao Doi.


Cell | 2006

Circadian regulator CLOCK is a histone acetyltransferase.

Masao Doi; Jun Hirayama; Paolo Sassone-Corsi

The molecular machinery that governs circadian rhythmicity comprises proteins whose interplay generates time-specific transcription of clock genes. The role of chromatin remodeling in a physiological setting such as the circadian clock is yet unclear. We show that the protein CLOCK, a central component of the circadian pacemaker, has histone acetyltransferase (HAT) activity. CLOCK shares homology with acetyl-coenzyme A binding motifs within the MYST family of HATs. CLOCK displays high sequence similarity to ACTR, a member of SRC family of HATs, with which it shares also enzymatic specificity for histones H3 and H4. BMAL1, the heterodimerization partner of CLOCK, enhances HAT function. The HAT activity of CLOCK is essential to rescue circadian rhythmicity and activation of clock genes in Clock mutant cells. Identification of CLOCK as a novel type of DNA binding HAT reveals that chromatin remodeling is crucial for the core clock mechanism and identifies unforeseen links between histone acetylation and cellular physiology.


Cell | 2013

RNA-Methylation-Dependent RNA Processing Controls the Speed of the Circadian Clock

Jean-Michel Fustin; Masao Doi; Yoshiaki Yamaguchi; Hayashi Hida; Shinichi Nishimura; Minoru Yoshida; Takayuki Isagawa; Masaki Suimye Morioka; Hideaki Kakeya; Ichiro Manabe; Hitoshi Okamura

The eukaryotic biological clock involves a negative transcription-translation feedback loop in which clock genes regulate their own transcription and that of output genes of metabolic significance. While around 10% of the liver transcriptome is rhythmic, only about a fifth is driven by de novo transcription, indicating mRNA processing is a major circadian component. Here, we report that inhibition of transmethylation reactions elongates the circadian period. RNA sequencing then reveals methylation inhibition causes widespread changes in the transcription of the RNA processing machinery, associated with m(6)A-RNA methylation. We identify m(6)A sites on many clock gene transcripts and show that specific inhibition of m(6)A methylation by silencing of the m(6)A methylase Mettl3 is sufficient to elicit circadian period elongation and RNA processing delay. Analysis of the circadian nucleocytoplasmic distribution of clock genes Per2 and Arntl then revealed an uncoupling between steady-state pre-mRNA and cytoplasmic mRNA rhythms when m(6)A methylation is inhibited.


Nature Medicine | 2010

Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6.

Masao Doi; Yukari Takahashi; Rie Komatsu; Fumiyoshi Yamazaki; Hiroyuki Yamada; Shogo Haraguchi; Noriaki Emoto; Yasushi Okuno; Gozoh Tsujimoto; Akihiro Kanematsu; Osamu Ogawa; Takeshi Todo; Kazuyoshi Tsutsui; Gijsbertus T. J. van der Horst; Hitoshi Okamura

Malfunction of the circadian clock has been linked to the pathogenesis of a variety of diseases. We show that mice lacking the core clock components Cryptochrome-1 (Cry1) and Cryptochrome-2 (Cry2) (Cry-null mice) show salt-sensitive hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. An extensive search for the underlying cause led us to identify type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6) as a new hypertension risk factor in mice. Hsd3b6 is expressed exclusively in aldosterone-producing cells and is under transcriptional control of the circadian clock. In Cry-null mice, Hsd3b6 messenger RNA and protein levels are constitutively high, leading to a marked increase in 3β-hydroxysteroid dehydrogenase-isomerase (3β-HSD) enzymatic activity and, as a consequence, enhanced aldosterone production. These data place Hsd3b6 in a pivotal position through which circadian clock malfunction is coupled to the development of hypertension. Translation of these findings to humans will require clinical examination of human HSD3B1 gene, which we found to be functionally similar to mouse Hsd3b6.


Science | 2013

Mice Genetically Deficient in Vasopressin V1a and V1b Receptors Are Resistant to Jet Lag

Yoshiaki Yamaguchi; Toru Suzuki; Yasutaka Mizoro; Hiroshi Kori; Kazuki Okada; Yulin Chen; Jean-Michel Fustin; Fumiyoshi Yamazaki; Naoki Mizuguchi; Jing Zhang; Xin Dong; Gozoh Tsujimoto; Yasushi Okuno; Masao Doi; Hitoshi Okamura

Resetting the Circadian Clock Fatigue and other symptoms of jet lag arise when the bodys internal circadian clock is out of sync with environmental light-dark cycles. Studying genetically modified mice lacking two receptors for the peptide hormone vasopressin under experimental conditions simulating jet lag, Yamaguchi et al. (p. 85; see the Perspective by Hastings) concluded that vasopressin signaling in the suprachiasmatic nucleus (SCN)—a region of the brain known to control circadian rhythms—impedes adjustment to the environmental clock. Infusion of vasopressin receptor antagonists directly into the SCN of wild-type mice accelerated their recovery from jet lag, suggesting that this pathway may merit further investigation as a pharmacological target for treating jet lag. In mice, the pace of recovery from jet lag is partly determined by vasopressin signaling in a certain region of the brain. [Also see Perspective by Hastings] Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a–/–V1b–/–). Nevertheless, the behavior of V1a–/–V1b–/– mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.


Journal of Immunology | 2010

Mammalian Clock Gene Cryptochrome Regulates Arthritis via Proinflammatory Cytokine TNF-α

Akira Hashiramoto; Takashi Yamane; Ken Tsumiyama; Kohsuke Yoshida; Koichiro Komai; Hiroyuki Yamada; Fumiyoshi Yamazaki; Masao Doi; Hitoshi Okamura; Shunichi Shiozawa

The mammalian clock genes, Period and Cryptochrome (Cry), regulate circadian rhythm. We show that circadian rhythmicity and rhythmic expression of Period in the nuclei of inflammatory synovial cells and spleen cells are disturbed in mouse models of experimental arthritis. Expressions of other clock genes, Bmal1 and Dbp, are also disturbed in spleen cells by arthritis induction. Deletion of Cry1 and Cry2 results in an increase in the number of activated CD3+ CD69+ T cells and a higher production of TNF-α from spleen cells. When arthritis is induced, Cry1−/−Cry2−/− mice develop maximal exacerbation of joint swelling, and upregulation of essential mediators of arthritis, including TNF-α, IL-1β and IL-6, and matrix metalloproteinase-3. Wee-1 kinase is solely upregulated in Cry1−/−Cry2−/− mice, in line with upregulation of c-Fos and Wee-1 kinase in human rheumatoid arthritis. The treatment with anti–TNF-α Ab significantly reduced the severity and halted the progression of the arthritis of Cry1−/−Cry2−/− mice and vice versa, ectopic expression of Cry1 in the mouse embryonic fibroblast from Cry1−/−Cry2−/− mice significantly reduced the trans activation of TNF-α gene. Thus, the biological clock and arthritis influence each other, and this interplay can influence human health and disease.


European Journal of Neuroscience | 2009

The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice

Takahiro Moriya; Reiko Aida; Takashi Kudo; Masashi Akiyama; Masao Doi; Naomi Hayasaka; Norimichi Nakahata; Ralph E. Mistlberger; Hitoshi Okamura; Shigenobu Shibata

Circadian rhythms in mammals are regulated by a light‐entrainable circadian pacemaker in the hypothalamic suprachiasmatic nucleus and food‐entrainable oscillators located elsewhere in the brain and body. The dorsomedial hypothalamic nucleus (DMH) has been proposed to be the site of oscillators driving food‐anticipatory circadian rhythms, but this is controversial. To further evaluate this hypothesis, we measured clock gene, temperature and activity rhythms in intact and DMH‐ablated mice. A single 4‐h midday feeding after an overnight fast induced mPer1 and mPer2 mRNA expression in the DMH, arcuate nucleus, nucleus of the solitary tract and area postrema, and reset daily rhythms of mPer1, mPer2 and mBMAL1 in the DMH, arcuate and neocortex. These rhythms persisted during 2 days of food deprivation after 12 days of scheduled daytime feeding. Acute induction of DMH mPer1 and mPer2 was N‐methyl‐d‐aspartate (NMDA) receptor‐dependent, whereas rhythmic expression after 6 days of restricted feeding was not. Thermal DMH lesions did not affect acute induction or rhythmic expression of clock genes in other brain regions in response to scheduled daytime feeding. DMH lesions attenuated mean daily activity levels and nocturnality but did not affect food‐anticipatory rhythms of activity and body temperature in either light–dark or constant darkness. These results confirm that the DMH and other brain regions express circadian clock gene rhythms sensitive to daytime feeding schedules, but do not support the hypothesis that DMH oscillations drive food‐anticipatory behavioral or temperature rhythms.


Nature Communications | 2011

Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus

Masao Doi; Atsushi Ishida; Akiko Miyake; Miho Sato; Rie Komatsu; Fumiyoshi Yamazaki; Ikuo Kimura; Soken Tsuchiya; Hiroshi Kori; Kazuyuki Seo; Yoshiaki Yamaguchi; Masahiro Matsuo; Jean-Michel Fustin; Rina Tanaka; Yasuko Santo; Hiroyuki Yamada; Yukari Takahashi; Michihiro Araki; Kazuki Nakao; Shin-Ichi Aizawa; Masaki Kobayashi; Karl Obrietan; Gozoh Tsujimoto; Hitoshi Okamura

Synchronous oscillations of thousands of cellular clocks in the suprachiasmatic nucleus (SCN), the circadian centre, are coordinated by precisely timed cell–cell communication, the principle of which is largely unknown. Here we show that the amount of RGS16 (regulator of G protein signalling 16), a protein known to inactivate Gαi, increases at a selective circadian time to allow time-dependent activation of intracellular cyclic AMP signalling in the SCN. Gene ablation of Rgs16 leads to the loss of circadian production of cAMP and as a result lengthens circadian period of behavioural rhythm. The temporally precise regulation of the cAMP signal by clock-controlled RGS16 is needed for the dorsomedial SCN to maintain a normal phase-relationship to the ventrolateral SCN. Thus, RGS16-dependent temporal regulation of intracellular G protein signalling coordinates the intercellular synchrony of SCN pacemaker neurons and thereby defines the 24 h rhythm in behaviour.


Nature Communications | 2012

Involvement of urinary bladder Connexin43 and the circadian clock in coordination of diurnal micturition rhythm

Hiromitsu Negoro; Akihiro Kanematsu; Masao Doi; Sylvia O. Suadicani; Masahiro Matsuo; Masaaki Imamura; Takeshi Okinami; Nobuyuki Nishikawa; Tomonori Oura; Shigeyuki Matsui; Kazuyuki Seo; Motomi Tainaka; Shoichi Urabe; Emi Kiyokage; Takeshi Todo; Hitoshi Okamura; Yasuhiko Tabata; Osamu Ogawa

Summary Nocturnal enuresis in children and nocturia in the elderly are two highly prevalent clinical conditions characterized by a mismatch between urine production rate in the kidneys and storage in the urinary bladder during the sleep phase. Here we demonstrate, using a novel method for automated recording of mouse micturition, that connexin43 (Cx43), a bladder gap junction protein, is a negative regulator of functional bladder capacity. Bladder Cx43 levels and functional capacity show circadian oscillations in wild-type mice, but such rhythms are completely lost in Cry-null mice having a dysfunctional biological clock. Bladder muscle cells have an internal clock, and show oscillations of Cx43 and gap junction function. A clock regulator, Rev-erbα, upregulates Cx43 transcription as a co-factor of Sp1 using Sp1 cis-elements of the promoter. Therefore, circadianoscillation of Cx43 is associated with the biological clock and contributes to diurnal changes in bladder capacity, which avoids disturbance of sleep by micturition.


Journal of Investigative Dermatology | 2009

Molecular Clocks in Mouse Skin

Miki Tanioka; Hiroyuki Yamada; Masao Doi; Hideki Bando; Yoshiaki Yamaguchi; Chikako Nishigori; Hitoshi Okamura

Clock genes in the skin exhibit day-night changes in expression; however, whether these changes are brought by external light or intrinsic mechanisms is unclear. In this study, we demonstrated that expression of the clock and clock-controlled genes showed robust rhythms in mouse skin under constant dark conditions, whereas these rhythms were completely lost in Cry1/Cry2 knockout mice lacking a molecular clock. At the cellular level, the main oscillatory protein in the mammalian molecular clock, PER2, was expressed in the nuclei of keratinocytes in the epidermis and hair follicles, with expression peaking at CT16 (subjective dusk), 4-8 hours after expression of its mRNA. These expression patterns in the skin stopped after the ablation of the central clock in the suprachiasmatic nucleus (SCN), which was not recovered even in animals housed in 12 hour-light/12 hour-dark conditions. These findings demonstrate that the intrinsic oscillating molecular clock exists in the epidermis, and that signaling from the SCN is essential for the maintenance of the epidermal clock, and cannot be compensated by external light.


Cell Reports | 2012

Rhythmic Nucleotide Synthesis in the Liver: Temporal Segregation of Metabolites

Jean-Michel Fustin; Masao Doi; Hiroyuki Yamada; Rie Komatsu; Shigeki Shimba; Hitoshi Okamura

The synthesis of nucleotides in the body is centrally controlled by the liver, via salvage or de novo synthesis. We reveal a pervasive circadian influence on hepatic nucleotide metabolism, from rhythmic gene expression of rate-limiting enzymes to oscillating nucleotide metabolome in wild-type (WT) mice. Genetic disruption of the hepatic clock leads to aberrant expression of these enzymes, together with anomalous nucleotide rhythms, such as constant low levels of ATP with an excess in uric acid, the degradation product of purines. These results clearly demonstrate that the hepatic circadian clock orchestrates nucleotide synthesis and degradation. This circadian metabolome timetable, obtained using state-of-the-art capillary electrophoresis time-of-flight mass spectrometry, will guide further investigations in nucleotide metabolism-related disorders.

Collaboration


Dive into the Masao Doi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge