Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaru Niitsu is active.

Publication


Featured researches published by Masaru Niitsu.


Plant and Cell Physiology | 2008

Thermospermine is Required for Stem Elongation in Arabidopsis thaliana

Jun Ichi Kakehi; Yoshitaka Kuwashiro; Masaru Niitsu; Taku Takahashi

Loss-of-function mutants of the ACAULIS5 (ACL5) gene in Arabidopsis thaliana have severe defects in stem elongation. ACL5 was previously reported as encoding a spermine synthase. A more recent study, however, showed that the bacterial expressed recombinant ACL5 protein catalyzes the conversion of spermidine to thermospermine, a structural isomer of spermine, rather than to spermine. In the present study, we found that thermospermine was detected in wild-type seedlings but was not detectable in the acl5-1 mutant. We further examined the effect of exogenous application of these isomers on the growth of acl5-1. Daily application of 0.1 mM thermospermine onto the shoot apex partially rescued the dwarf phenotype of acl5-1, while that of spermine had no effects on the morphology of the mutant. The acl5-1 transcript level in acl5-1 seedlings, which is much higher than the ACL5 transcript level in wild-type seedlings, was reduced by exogenous thermospermine. Thus we conclude that thermospermine is indeed produced through the action of ACL5 and required for stem elongation in Arabidopsis.


Biochemical and Biophysical Research Communications | 2009

Acrolein toxicity: Comparison with reactive oxygen species.

Madoka Yoshida; Hideyuki Tomitori; Yoshiki Machi; Motofumi Hagihara; Kyohei Higashi; Hitomi Goda; Takeshi Ohya; Masaru Niitsu; Keiko Kashiwagi; Kazuei Igarashi

The toxicity of acrolein was compared with that of reactive oxygen species using a mouse mammary carcinoma FM3A cell culture system. Complete inhibition of cell growth was accomplished with 10 microM acrolein, 100 microM H(2)O(2), and 20 microM H(2)O(2) plus 1mM vitamin C, which produce ()OH, suggesting that toxicity of acrolein is more severe than H(2)O(2) and nearly equal to that of ()OH, when these compounds were added extracellularly. Acrolein toxicity was prevented by N-acetyl-l-cysteine and N-benzylhydroxylamine, and attenuated by putrescine and spermidine. Toxicity of H(2)O(2) was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase, and reduced by polyphenol, and toxicity of ()OH was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase and reduced by N-acetyl-l-cysteine. The results indicate that prevention of cell toxicity by N-acetyl-l-cysteine was more effective with acrolein than with ()OH. Protein and DNA synthesis was damaged primarily by acrolein and reactive oxygen species, respectively.


Plant Cell Reports | 2010

Characterization of five polyamine oxidase isoforms in Arabidopsis thaliana

Yoshihiro Takahashi; Runzi Cong; G. H. M. Sagor; Masaru Niitsu; Thomas Berberich; Tomonobu Kusano

The genome of Arabidopsis thaliana contains five genes (AtPAO1 to AtPAO5) encoding polyamine oxidase (PAO) which is an enzyme responsible for polyamine catabolism. To understand the individual roles of the five AtPAOs, here we characterized their tissue-specific and space-temporal expression. AtPAO1 seems to have a specific function in flower organ. AtPAO2 was expressed in shoot meristem and root tip of seedlings, and to a higher extent in the later growth stage within restricted parts of the organs, such as shoot meristem, leaf petiole and also in anther. The expression of AtPAO3 was constitutive, but highest in flower organ. AtPAO3 promoter activity was detected in cotyledon, distal portion of root, boundary region of mature rosette leaf and in filaments of flower. AtPAO4 was expressed at higher level all over young seedlings including roots, and in the mature stage its expression was ubiquitous with rather lower level in stem. AtPAO5 expression was observed in the whole plant body throughout various growth stages. Its highest expression was in flowers, particularly in sepals, but not in petals. Furthermore, we determined the substrate specificity of AtPAO1 to AtPAO4. None of the AtPAO enzymes recognized putrescine (Put). AtPAO2 and AtPAO3 showed almost similar substrate recognition patterns in which the most preferable substrate is spermidine (Spd) followed by less specificity to other tetraamines tested. AtPAO4 seemed to be spermine (Spm)-specific. More interestingly, AtPAO1 preferred thermospermine (T-Spm) and norspermine (NorSpm) to Spm, but did not recognize Spd. Based on the results, the individual function of AtPAOs is discussed.


Amino Acids | 2012

Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion.

Yusuke Ono; Dong Wook Kim; Kanako Watanabe; Ayano Sasaki; Masaru Niitsu; Thomas Berberich; Tomonobu Kusano; Yoshihiro Takahashi

Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine (PA) catabolism. Recent studies have revealed that plant PAOs are not only active in the terminal catabolism of PAs as demonstrated for maize apoplastic PAO but also in a polyamine back-conversion pathway as shown for most Arabidopsis PAOs. We have characterized Oryza sativaPAOs at molecular and biochemical levels. The rice genome contains 7 PAO isoforms that are termed OsPAO1 to OsPAO7. Of the seven PAOs, OsPAO3, OsPAO4, and OsPAO5 transcripts were most abundant in 2-week-old seedlings and mature plants, while OsPAO1, OsPAO2, OsPAO6, and OsPAO7 were expressed at very low levels with different tissue specificities. The more abundantly expressed PAOs—OsPAO3, OsPAO4, and OsPAO5—were cloned, and their gene products were produced in Escherichia coli. The enzymatic activities of the purified OsPAO3 to OsPAO5 proteins were examined. OsPAO3 favored spermidine (Spd) as substrate followed by thermospermine (T-Spm) and spermine (Spm) and showed a full PA back-conversion activity. OsPAO4 substrate specificity was similar to that of OsPAO5 preferring Spm and T-Spm but not Spd. Those enzymes also converted Spm and T-Spm to Spd, again indicative of PA back-conversion activities. Lastly, we show that OsPAO3, OsPAO4, and OsPAO5 are localized in peroxisomes. Together, these data revealed that constitutively and highly expressed O. sativa PAOs are localized in peroxisomes and catalyze PA back-conversion processes.


Plant Physiology and Biochemistry | 2010

Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress.

Yukie Naka; Kanako Watanabe; G. H. M. Sagor; Masaru Niitsu; M. Arumugam Pillai; Tomonobu Kusano; Yoshihiro Takahashi

Arabidopsis thaliana was thought to contain two spermine synthase genes, ACAULIS 5 (ACL5) and SPMS. Recent investigations, however, revealed that the ACL5 gene encodes thermospermine synthase. In this study, we have established a simple method to separate two isomers of tetraamine, spermine and thermospermine, in extracts from plant tissues of less than 500 mg. Polyamines (PAs) extracted from plant tissues were benzoylated, and the derivatives were completely resolved by high-performance liquid chromatography on a C18 reverse-phase column, by eluting with 42% (v/v) acetonitrile in water in an isocratic manner at 30 degrees C and monitoring at 254 nm. The relevance of the method was confirmed by co-chromatography with respective PAs and by the PA analysis of the single- and double-mutants of acl5 and spms, which could not synthesize thermospermine and/or spermine, respectively. Furthermore, with this method, we monitored the thermospermine contents in various tissues of A. thaliana and found that stems and flowers contain two- to three-fold more thermospermine compared to whole seedlings and mature leaves. The presence of thermospermine was confirmed in Oryza sativa and Lycopersicon pesculentum. Finally we addressed whether salinity stress changes the contents of PAs including thermospermine in Arabidopsis.


Journal of Chromatography A | 1993

Systematic analysis of naturally occurring linear and branched polyamines by gas chromatography and gas chromatography—mass spectrometry

Masaru Niitsu; Keijiro Samejima; Shigeru Matsuzaki; Koei Hamana

Abstract Using heptafluorobutyryl derivatives of a series of 27 linear di-, tri-, tetra-, penta- and hexaamines containing various sets of isomers, and a series of four tertiary tetraamines and five quaternary pentaamines, mostly with three or four methylene chain units, their gas chromatographic (GC) and gas chromatographic—mass spectrometric (GC—MS) properties were compared and examined in detail. Several results useful for their systematic analysis were found: assured baseline separation of one methylene difference in linear di- and polyamines and tertiary tetraamines by GC; distinct pyrolytic decomposition patterns of quaternary pentaamines by GC; distinct cleavage patterns of three or four methylene chain units by GC—MS; and distinct mass spectra of linear polyamines and tertiary tetraamines by GC—MS.


Transgenic Research | 2013

The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes

G. H. M. Sagor; Thomas Berberich; Yoshihiro Takahashi; Masaru Niitsu; Tomonobu Kusano

It is known that the polyamine (PA) biosynthetic pathway is modulated at the transcriptional level during abiotic stresses. Here we studied the expression of PA biosynthetic pathway genes upon exposure to heat shock (HS) in Arabidopsis and showed that the spermine (Spm) synthase gene (SPMS) and S-adenosylmethionine decarboxylase 2 gene are induced at the earliest stage, followed by the induction of the arginine decarboxylase 2 gene. Correspondingly, Spm content increased linearly upon HS, and putrescine (Put) and spermidine (Spd) content also increased but not thermospermine (T-Spm) content. Exogenously applied Spm had a potential to protect Arabidopsis plants from HS-induced damage. Such protection was also observed to the same extent with T-Spm and by Spd to a lesser extent but not by Put. Then we tested whether altered endogenous Spm content affects sensitivity to HS using both transgenic plants overexpressing SPMS and a Spm deficient (spms) mutant plant. The result revealed that the higher the Spm content the higher the thermotolerance. Even in the spms plant, representative genes encoding heat shock proteins (HSPs) and heat shock transcription factors were upregulated upon HS, while the expression of such genes was increased in a positively correlated manner with Spm content. Furthermore four kinds of HSPs (HSP101, HSP90, HSP70 and HSP17.6) were detected proportionally with the levels of their respective transcripts upon HS. We propose that Spm increases the HS response at transcriptional and translational levels and protects host plants from HS-induced damage.


Journal of Biological Chemistry | 2005

N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus.

Mio Ohnuma; Yusuke Terui; Masatada Tamakoshi; Hidemichi Mitome; Masaru Niitsu; Keijiro Samejima; Etsuko Kawashima; Tairo Oshima

In the extreme thermophile Thermus thermophilus, a disruption mutant of a gene homologous to speB (coding for agmatinase = agmatine ureohydrolase) accumulated N1-aminopropylagmatine (N8-amidino-1,8-diamino-4-azaoctane, N8-amidinospermidine), a new compound, whereas all other polyamines produced by the wild-type strain were absent from the cells. Double disruption of speB and speE (polyamine aminopropyltransferase) resulted in the disappearance of N1-aminopropylagmatine and the accumulation of agmatine. These results suggested the following. 1) N1-Aminopropylagmatine is produced from agmatine by the action of an enzyme coded by speE. 2) N1-Aminopropylagmatine is a metabolic intermediate in the biosynthesis of unique polyamines found in the thermophile. 3) N1-Aminopropylagmatine is a substrate of the SpeB homolog. They further suggest a new biosynthetic pathway in T. thermophilus, by which polyamines are formed from agmatine via N1-aminopropylagmatine. To confirm our speculation, we purified the expression product of the speB homolog and confirmed that the enzyme hydrolyzes N1-aminopropylagmatine to spermidine but does not act on agmatine.


Plant Physiology | 2014

Polyamine Oxidase5 Regulates Arabidopsis Growth through Thermospermine Oxidase Activity

Dong Wook Kim; Kanako Watanabe; Chihiro Murayama; Sho Izawa; Masaru Niitsu; Anthony J. Michael; Thomas Berberich; Tomonobu Kusano

An Arabidopsis mutant with defective polyamine oxidase5 exhibits delayed transition from vegetative to reproductive growth caused by lack of thermospermine oxidation. The major plant polyamines (PAs) are the tetraamines spermine (Spm) and thermospermine (T-Spm), the triamine spermidine, and the diamine putrescine. PA homeostasis is governed by the balance between biosynthesis and catabolism; the latter is catalyzed by polyamine oxidase (PAO). Arabidopsis (Arabidopsis thaliana) has five PAO genes, AtPAO1 to AtPAO5, and all encoded proteins have been biochemically characterized. All AtPAO enzymes function in the back-conversion of tetraamine to triamine and/or triamine to diamine, albeit with different PA specificities. Here, we demonstrate that AtPAO5 loss-of-function mutants (pao5) contain 2-fold higher T-Spm levels and exhibit delayed transition from vegetative to reproductive growth compared with that of wild-type plants. Although the wild type and pao5 are indistinguishable at the early seedling stage, externally supplied low-dose T-Spm, but not other PAs, inhibits aerial growth of pao5 mutants in a dose-dependent manner. Introduction of wild-type AtPAO5 into pao5 mutants rescues growth and reduces the T-Spm content, demonstrating that AtPAO5 is a T-Spm oxidase. Recombinant AtPAO5 catalyzes the conversion of T-Spm and Spm to triamine spermidine in vitro. AtPAO5 specificity for T-Spm in planta may be explained by coexpression with T-Spm synthase but not with Spm synthase. The pao5 mutant lacking T-Spm oxidation and the acl5 mutant lacking T-Spm synthesis both exhibit growth defects. This study indicates a crucial role for T-Spm in plant growth and development.


Plant and Cell Physiology | 2014

Polyamine Oxidase 7 is a Terminal Catabolism-Type Enzyme in Oryza sativa and is Specifically Expressed in Anthers

Taibo Liu; Dong Wook Kim; Masaru Niitsu; Shunsuke Maeda; Masao Watanabe; Yoshiyuki Kamio; Thomas Berberich; Tomonobu Kusano

Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm) and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1-OsPAO7. To date, we have characterized four OsPAO genes. The products of these genes, i.e. OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.

Collaboration


Dive into the Masaru Niitsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidenori Hayashi

Maebashi Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge