Masaru Niki
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masaru Niki.
Nature | 2005
Zhenbang Chen; Lloyd C. Trotman; David R. Shaffer; Hui Kuan Lin; Zohar A. Dotan; Masaru Niki; Jason A. Koutcher; Howard I. Scher; Thomas Ludwig; William L. Gerald; Carlos Cordon-Cardo; Pier Paolo Pandolfi
Cellular senescence has been theorized to oppose neoplastic transformation triggered by activation of oncogenic pathways in vitro, but the relevance of senescence in vivo has not been established. The PTEN and p53 tumour suppressors are among the most commonly inactivated or mutated genes in human cancer including prostate cancer. Although they are functionally distinct, reciprocal cooperation has been proposed, as PTEN is thought to regulate p53 stability, and p53 to enhance PTEN transcription. Here we show that conditional inactivation of Trp53 in the mouse prostate fails to produce a tumour phenotype, whereas complete Pten inactivation in the prostate triggers non-lethal invasive prostate cancer after long latency. Strikingly, combined inactivation of Pten and Trp53 elicits invasive prostate cancer as early as 2 weeks after puberty and is invariably lethal by 7 months of age. Importantly, acute Pten inactivation induces growth arrest through the p53-dependent cellular senescence pathway both in vitro and in vivo, which can be fully rescued by combined loss of Trp53. Furthermore, we detected evidence of cellular senescence in specimens from early-stage human prostate cancer. Our results demonstrate the relevance of cellular senescence in restricting tumorigenesis in vivo and support a model for cooperative tumour suppression in which p53 is an essential failsafe protein of Pten-deficient tumours.
PLOS Biology | 2003
Lloyd C. Trotman; Masaru Niki; Zohar A. Dotan; Jason A. Koutcher; Antonio Di Cristofano; Andrew Xiao; Alan S Khoo; Pradip Roy-Burman; Norman M. Greenberg; Terry Van Dyke; Carlos Cordon-Cardo; Pier Paolo Pandolfi
Complete inactivation of the PTEN tumor suppressor gene is extremely common in advanced cancer, including prostate cancer (CaP). However, one PTEN allele is already lost in the vast majority of CaPs at presentation. To determine the consequence of PTEN dose variations on cancer progression, we have generated by homologous recombination a hypomorphic Pten mouse mutant series with decreasing Pten activity: Ptenhy/+ > Pten+/− > Ptenhy/− (mutants in which we have rescued the embryonic lethality due to complete Pten inactivation) > Pten prostate conditional knockout (Ptenpc) mutants. In addition, we have generated and comparatively analyzed two distinct Ptenpc mutants in which Pten is inactivated focally or throughout the entire prostatic epithelium. We find that the extent of Pten inactivation dictate in an exquisite dose-dependent fashion CaP progression, its incidence, latency, and biology. The dose of Pten affects key downstream targets such as Akt, p27Kip1, mTOR, and FOXO3. Our results provide conclusive genetic support for the notion that PTEN is haploinsufficient in tumor suppression and that its dose is a key determinant in cancer progression.
Journal of Immunology | 2002
Vanessa L. Ott; Idan Tamir; Masaru Niki; Pier Paolo Pandolfi; John C. Cambier
The low-affinity receptor for IgG, FcγRIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of FcγRIIB with the high-affinity IgE receptor, FcεRI, leads to inhibition of Ag-induced degranulation and cytokine production. FcγRIIB inhibitory activity requires a conserved motif within the FcγRIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., FcεRI, B cell Ag receptor), FcγRIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates FcγRIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that FcγRIIB coaggregation with FcεRI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62dok. Concurrently, enhanced p62dok tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate FcγRIIB inhibitory function in mast cells via recruitment of p62dok and RasGAP. Supporting this hypothesis, recruitment of p62dok to FcεRI is sufficient to inhibit FcεRI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62dok can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62dok is dispensable for FcγRIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62dok as a mediator of FcγRIIB inhibition of FcεRI signal transduction in mast cells.
Nature Genetics | 2010
Alice H. Berger; Masaru Niki; Alessandro Morotti; Barry S. Taylor; Nicholas D. Socci; Agnes Viale; Cameron Brennan; Janos Szoke; Noriko Motoi; Paul B. Rothman; Julie Teruya-Feldstein; William L. Gerald; Marc Ladanyi; Pier Paolo Pandolfi
Genome-wide analyses of human lung adenocarcinoma have identified regions of consistent copy-number gain or loss, but in many cases the oncogenes and tumor suppressors presumed to reside in these loci remain to be determined. Here we identify the downstream of tyrosine kinase (Dok) family members Dok1, Dok2 and Dok3 as lung tumor suppressors. Single, double or triple compound loss of these genes in mice results in lung cancer, with penetrance and latency dependent on the number of lost Dok alleles. Cancer development is preceded by an aberrant expansion and signaling profile of alveolar type II cells and bronchioalveolar stem cells. In human lung adenocarcinoma, we identify DOK2 as a target of copy-number loss and mRNA downregulation and find that DOK2 suppresses lung cancer cell proliferation in vitro and in vivo. Given the genomic localization of DOK2, we propose it as an 8p21.3 haploinsufficient human lung tumor suppressor.
Journal of Experimental Medicine | 2004
Masaru Niki; Antonio Di Cristofano; Mingming Zhao; Hiroaki Honda; Hisamaru Hirai; Linda Van Aelst; Carlos Cordon-Cardo; Pier Paolo Pandolfi
Chronic myelogenous leukemia (CML) is characterized by the presence of the chimeric p210bcr/abl oncoprotein that shows elevated and constitutive protein tyrosine kinase activity relative to the normal c-abl tyrosine kinase. Although several p210bcr/abl substrates have been identified, their relevance in the pathogenesis of the disease is unclear. We have identified a family of proteins, Dok (downstream of tyrosine kinase), coexpressed in hematopoietic progenitor cells. Members of this family such as p62dok(Dok-1) and p56dok-2(Dok-2) associate with the p120 rasGTPase-activating protein (rasGAP) upon phosphorylation by p210bcr/abl as well as receptor and nonreceptor tyrosine kinases. Here, we report the generation and characterization of single and double Dok-1 or Dok-2 knockout (KO) mutants. Single KO mice displayed normal steady-state hematopoiesis. By contrast, concomitant Dok-1 and Dok-2 inactivation resulted in aberrant hemopoiesis and Ras/MAP kinase activation. Strikingly, all Dok-1/Dok-2 double KO mutants spontaneously developed transplantable CML-like myeloproliferative disease due to increased cellular proliferation and reduced apoptosis. Furthermore, Dok-1 or Dok-2 inactivation markedly accelerated leukemia and blastic crisis onset in Tec-p210 bcr/abl transgenic mice known to develop, after long latency, a myeloproliferative disorder resembling human CML. These findings unravel the critical and unexpected role of Dok-1 and Dok-2 in tumor suppression and control of the hematopoietic compartment homeostasis.
Journal of Cell Biology | 2004
Pamela J. Woodring; Jill Meisenhelder; Sam A. Johnson; Guo-Lei Zhou; Jeffrey Field; Kavita Shah; Friedhelm Bladt; Tony Pawson; Masaru Niki; Pier Paolo Pandolfi; Jean Y. J. Wang; Tony Hunter
Filopodia are dynamic F-actin structures that cells use to explore their environment. c-Abl tyrosine kinase promotes filopodia during cell spreading through an unknown mechanism that does not require Cdc42 activity. Using an unbiased approach, we identified Dok1 as a specific c-Abl substrate in spreading fibroblasts. When activated by cell adhesion, c-Abl phosphorylates Y361 of Dok1, promoting its association with the Src homology 2 domain (SH2)/SH3 adaptor protein Nck. Each signaling component was critical for filopodia formation during cell spreading, as evidenced by the finding that mouse fibroblasts lacking c-Abl, Dok1, or Nck had fewer filopodia than cells reexpressing the product of the disrupted gene. Dok1 and c-Abl stimulated filopodia in a mutually interdependent manner, indicating that they function in the same signaling pathway. Dok1 and c-Abl were both detected in filopodia of spreading cells, and therefore may act locally to modulate actin. Our data suggest a novel pathway by which c-Abl transduces signals to the actin cytoskeleton through phosphorylating Dok1 Y361 and recruiting Nck.
Journal of Immunology | 2006
Masaki Kashiwada; Giorgio Cattoretti; Lisa McKeag; Todd Rouse; Brian M. Showalter; Umaima Al-Alem; Masaru Niki; Pier Paolo Pandolfi; Elizabeth H. Field; Paul B. Rothman
The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice. Dok-1/SHIP DKO mice were runted and had a shorter life span compared with either Dok-1 KO or SHIP KO mice. Thymocyte numbers from Dok-1/SHIP DKO mice were reduced by 90%. Surface expression of both CD25 and CD69 was elevated on freshly isolated splenic CD4+ T cells from SHIP KO and Dok-1/SHIP DKO, suggesting these cells were constitutively activated. However, these T cells did not proliferate or produce IL-2 after stimulation. Interestingly, the CD4+ T cells from SHIP KO and Dok-1/SHIP DKO mice produced higher levels of TGF-β, expressed Foxp3, and inhibited IL-2 production by CD3-stimulated CD4+CD25− T cells in vitro. These findings suggest Dok-1 and SHIP function in pathways that influence regulatory T cell development.
Molecular and Cellular Biology | 2006
Mingming Zhao; Justyna A. Janas; Masaru Niki; Pier Paolo Pandolfi; Linda Van Aelst
ABSTRACT The Dok adaptor proteins play key regulatory roles in receptor and non-receptor kinase-initiated signaling pathways. Dok-1, the prototype member of this family, negatively regulates cell proliferation elicited by numerous growth factors, including platelet-derived growth factor (PDGF). However, how Dok-1 exerts its negative effect on mitogenesis has remained elusive. Using Dok-1 knockout cells and Dok-1 mutants deficient in binding to specific Dok-1-interacting proteins, we show that Dok-1 interferes with PDGF-stimulated c-myc induction and Ras/mitogen-activated protein kinase (MAPK) activation by tethering different signaling components to the cell membrane. Specifically, Dok-1 attenuates PDGF-elicited c-myc induction by recruiting Csk to active Src kinases, whereupon their activities and consequent c-myc induction are diminished. On the other hand, Dok-1 negatively regulates PDGF-induced MAPK activation by acting on Ras-GAP and at least one other Dok-1-interacting protein. Importantly, we demonstrate that Dok-1s actions on both of these signaling pathways contribute to its inhibitory effect on mitogenesis. Our data suggest a mechanistic basis for the inhibitory effect of Dok-1 on growth factor-induced mitogenesis and its role as a tumor suppressor.
PLOS ONE | 2013
Alice H. Berger; Ming Chen; Alessandro Morotti; Justyna A. Janas; Masaru Niki; Roderick T. Bronson; Barry S. Taylor; Marc Ladanyi; Linda Van Aelst; Katerina Politi; Harold E. Varmus; Pier Paolo Pandolfi
Somatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS. These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma.
Cell Cycle | 2005
Shinji Oki; Andre Limnander; Pin Mei Yao; Masaru Niki; Pier Paolo Pandolfi; Paul B. Rothman
The v-Abl tyrosine kinase activates several signaling pathways during transformation of bonemarrow cells in mice. Because the SH2-containing inositol 5’-phosphatase (SHIP) andDownstream of tyrosine kinase 1 (Dok1) have been shown interact with Abl, the effect ofSHIP and Dok1 deficiency on v-Abl transformation was investigated. Bone marrow cellsfrom either Dok1- or SHIP-deficient mice are more susceptible to transformation by v-Abl.v-Abl-transformed pre-B cells from these knockout mice show Abl kinase-dependenthyperproliferation and moderate resistance to apoptosis. Elevated activation of Ras, Raf-1,and Erk, but not of Akt, was observed in either SHIP (-/-) or Dok1 (-/-) v-Abl-transformedcells. This activation is sensitive to treatment with STI571. Furthermore, treatment of thesecells with either a farnesyltransferase inhibitor or a MEK1/2 inhibitor abrogates the increasedproliferation of SHIP (-/-) or Dok1 (-/-) cells in a dose-dependent manner. Complementationof SHIP (-/-) or Dok1 (-/-) cells abrogates their hyperproliferation and intracellular Erkactivation. These data indicate that both SHIP and Dok1 functionally regulate the activationof Ras-Erk pathway by v-Abl and affect the mitogenic activity of v-Abl transformed bonemarrow cells.