Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masaru Tamura is active.

Publication


Featured researches published by Masaru Tamura.


Development | 2005

Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb.

Tomoko Sagai; Masaki Hosoya; Youichi Mizushina; Masaru Tamura; Toshihiko Shiroishi

Mutations in a conserved non-coding region in intron 5 of the Lmbr1 locus, which is 1 Mb away from the sonic hedgehog (Shh) coding sequence, are responsible for mouse and human preaxial polydactyly with mirror-image digit duplications. In the mouse mutants, ectopic Shh expression is observed in the anterior mesenchyme of limb buds. Furthermore, a transgenic reporter gene flanked with this conserved non-coding region shows normal polarized expression in mouse limb buds. This conserved sequence has therefore been proposed to act as a long-range, cis-acting regulator of limb-specific Shh expression. Previous phylogenetic studies have also shown that this sequence is highly conserved among tetrapods, and even in teleost fishes. Paired fins of teleost fishes and tetrapod limbs have evolved from common ancestral appendages, and polarized Shh expression is commonly observed in fins. In this study, we first show that this conserved sequence motif is also physically linked to the Shh coding sequence in a teleost fish, the medaka, by homology search of a newly available genomic sequence database. Next, we show that deletion of this conserved intronic sequence by targeted mutation in the mouse results in a complete loss of Shh expression in the limb bud and degeneration of skeletal elements distal to the stylopod/zygopod junction. This sequence contains a major limb-specific Shh enhancer that is necessary for distal limb development. These results suggest that the conserved intronic sequence evolved in a common ancestor of fishes and tetrapods to control fin and limb development.


Mammalian Genome | 2004

Phylogenetic conservation of a limb-specific, cis-acting regulator of Sonic hedgehog ( Shh).

Tomoko Sagai; Hiroshi Masuya; Masaru Tamura; Kunihiko Shimizu; Yukari Yada; Shigeharu Wakana; Yoichi Gondo; Tetsuo Noda; Toshihiko Shiroishi

Polarized expression of the Sonic hedgehog (Shh) gene in the posterior mesenchyme is essential for pattern formation in the appendages of higher vertebrates, from teleost fins to tetrapod limb buds. We report on a sequence in intron 5 of the Lmbr1 gene, which resides approximately 1 Mb from the Shh coding region in the mouse genome and is highly conserved among teleost fishes and throughout the tetrapod lineage. Positional cloning revealed that two mouse mutations, Hx and M100081, characterized by mirror-image digit duplication and ectopic anterior Shh expression, have base substitutions in this sequence. Absence of the conserved sequence in limbless reptiles and amphibians and a cis-trans test using the Hx and Shh KO alleles suggest that the sequence is a cis-acting regulator that controls the polarized expression of Shh.


Development | 2009

A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings.

Tomoko Sagai; Takanori Amano; Masaru Tamura; Yoichi Mizushina; Kenta Sumiyama; Toshihiko Shiroishi

The sonic hedgehog (Shh) pathway plays indispensable roles in the morphogenesis of mouse epithelial linings of the oral cavity and respiratory and digestive tubes. However, no enhancers that regulate regional Shh expression within the epithelial linings have been identified so far. In this study, comparison of genomic sequences across mammalian species and teleost fishes revealed three novel conserved non-coding sequences (CNCSs) that cluster in a region 600 to 900 kb upstream of the transcriptional start site of the mouse Shh gene. These CNCSs drive regional transgenic lacZ reporter expression in the epithelial lining of the oral cavity, pharynx, lung and gut. Together, these enhancers recapitulate the endogenous Shh expression domain within the major epithelial linings. Notably, genomic arrangement of the three CNCSs shows co-linearity that mirrors the order of the epithelial expression domains along the anteroposterior body axis. The results suggest that the three CNCSs are epithelial lining-specific long-range Shh enhancers, and that their actions partition the continuous epithelial linings into three domains: ectoderm-derived oral cavity, endoderm-derived pharynx, and respiratory and digestive tubes of the mouse. Targeted deletion of the pharyngeal epithelium specific CNCS results in loss of endogenous Shh expression in the pharynx and postnatal lethality owing to hypoplasia of the soft palate, epiglottis and arytenoid. Thus, this long-range enhancer is indispensable for morphogenesis of the pharyngeal apparatus.


Developmental Biology | 2009

Essential mesenchymal role of small GTPase Rac1 in interdigital programmed cell death during limb development.

Dai Suzuki; Atsushi Yamada; Takanori Amano; Rika Yasuhara; Ayako Kimura; Mizuho Sakahara; Noriyuki Tsumaki; Shu Takeda; Masaru Tamura; Masanori Nakamura; Naoyuki Wada; Tsutomu Nohno; Toshihiko Shiroishi; Atsu Aiba; Ryutaro Kamijo

Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.


DNA Research | 2014

Prdm9 polymorphism unveils mouse evolutionary tracks.

Hiromitsu Kono; Masaru Tamura; Naoki Osada; Hitoshi Suzuki; Kuniya Abe; Kazuo Moriwaki; Kunihiro Ohta; Toshihiko Shiroishi

PR/SET domain containing 9 (Prdm9) mediates histone modifications such as H3K4me3 and marks hotspots of meiotic recombination. In many mammalian species, the Prdm9 gene is highly polymorphic. Prdm9 polymorphism is assumed to play two critical roles in evolution: to diversify the spectrum of meiotic recombination hotspots and to cause male hybrid sterility, leading to reproductive isolation and speciation. Nevertheless, information about Prdm9 sequences in natural populations is very limited. In this study, we conducted a comprehensive population survey on Prdm9 polymorphism in the house mouse, Mus musculus. Overall M. musculus Prdm9 displays an extraordinarily high level of polymorphism, particularly in regions encoding zinc finger repeats, which recognize recombination hotspots. Prdm9 alleles specific to various M. musculus subspecies dominate in subspecies territories. Moreover, introgression into other subspecies territories was found for highly divergent Prdm9 alleles associated with t-haplotype. The results of our phylogeographical analysis suggest that the requirement for hotspot diversity depends on geographical range and time span in mouse evolution, and that Prdm9 polymorphism has not been maintained by a simple balanced selection in the population of each subspecies.


Brain Research | 2001

Cerebroprotective action of a Na+/Ca2+ channel blocker NS-7. I. Effect on the cerebral infarction and edema at the acute stage of permanent middle cerebral artery occlusion in rats.

Yasuaki Aoki; Masaru Tamura; Yojiro Ukai

We have previously shown that NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride] reduces the size of cerebral infarction measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h after permanent middle cerebral artery occlusion (MCAO) in rats. To determine whether NS-7 improves the pathological and behavioral changes at the chronic stage of MCAO, the effect of this compound on the cerebral infarction as well as the neurological and cognitive impairments was investigated 7 days after MCAO. Single or five daily injections of NS-7 (0.125-0.5 mg/kg, i.v.) significantly reduced the infarct volume and improved the neuronal dysfunction including the hind leg paralysis, walking disability and motor incoordination, and the deficit of passive avoidance task, although the neuroprotective efficacy was not different among these dosing regimens. On the other hand, the effects of single versus repeated injections of NS-7 at 0.1 or 0.2 mg/kg on the neurological symptoms were compared at 4 weeks after MCAO. At a lower dose, repeated but not single injection of NS-7 significantly improved the neurological symptoms, although the single injection was effective at a higher dose. From these findings, it is suggested that NS-7 reverses the behavioral and cognitive dysfunction observed at the chronic stage of cerebral ischemia by suppressing the cerebral infarction.


Human Molecular Genetics | 2013

Overdosage of Hand2 causes limb and heart defects in the human chromosomal disorder partial trisomy distal 4q

Masaru Tamura; Masaki Hosoya; Motoi Fujita; Tomoko Iida; Takanori Amano; Akiteru Maeno; Taro Kataoka; Taketo Otsuka; Shigekazu Tanaka; Shuichi Tomizawa; Toshihiko Shiroishi

Partial trisomy distal 4q (denoted 4q+) is a human chromosomal disorder caused by duplication of the distal end of the long arm of chromosome 4 (Chr4). This disorder manifests typical phenotypes, including craniofacial, renal, heart and thumb developmental defects. Although these clinical features are likely caused by a dosage imbalance in the gene network involving the trisomic region, the causative gene or genes and the molecular bases are largely unknown. Here, we report mouse Recombination-induced mutation 4 (Rim4) as a model animal of 4q+. The Rim4 genome contains an insertion of a 6.5 Mb fragment from mouse chromosome 8 into chromosome 6. This insertion fragment contains 17 genes, including Hand2, that encode the basic helix-loop-helix transcription factor and is syntenic to the distal end of human Chr4, 4q32.3 to 4q34.1, which is responsible for 4q+. A comparison of phenotypes between patients with Rim4 and 4q+ revealed that Rim4 shows direct parallels with many phenotypes of 4q+ such as craniofacial, heart, cervical vertebra and limb deformities. Rebalancing the gene dosage by a genetic cross with Hand2 knockout mice ameliorated symptoms of the heart and limb deformities of Rim4. Conversely, an increase in copy number of Hand2 in wild-type mice recaptures the heart and limb deformities of Rim4. Our results collectively demonstrate that overdosage of Hand2 is a major cause for at least the limb and heart phenotypes of 4q+ and that mouse Rim4 provides a unique animal model for understanding the molecular bases underlying the complex phenotypes of 4q+.


G3: Genes, Genomes, Genetics | 2013

Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome

Shigekazu Tanaka; Youichi Mizushina; Yoriko Kato; Masaru Tamura; Toshihiko Shiroishi

Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well.


Brain Research | 2001

Cerebroprotective action of a Na+/Ca2+ channel blocker NS-7. II. Effect on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of permanent middle cerebral artery occlusion in rats.

Masaru Tamura; Yasuaki Aoki; Toshie Seto; Yojiro Ukai

Abstract We have previously shown that NS-7 [4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride] reduces the size of cerebral infarction measured by 2,3,5-triphenyltetrazolium chloride staining at 48 h after permanent middle cerebral artery occlusion (MCAO) in rats. To determine whether NS-7 improves the pathological and behavioral changes at the chronic stage of MCAO, the effect of this compound on the cerebral infarction as well as the neurological and cognitive impairments was investigated 7 days after MCAO. Single or five daily injections of NS-7 (0.125–0.5 mg/kg, i.v.) significantly reduced the infarct volume and improved the neuronal dysfunction including the hind leg paralysis, walking disability and motor incoordination, and the deficit of passive avoidance task, although the neuroprotective efficacy was not different among these dosing regimens. On the other hand, the effects of single versus repeated injections of NS-7 at 0.1 or 0.2 mg/kg on the neurological symptoms were compared at 4 weeks after MCAO. At a lower dose, repeated but not single injection of NS-7 significantly improved the neurological symptoms, although the single injection was effective at a higher dose. From these findings, it is suggested that NS-7 reverses the behavioral and cognitive dysfunction observed at the chronic stage of cerebral ischemia by suppressing the cerebral infarction.


Scientific Reports | 2015

Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes

Yoko Nabeshima; Miwa Washida; Masaru Tamura; Akiteru Maeno; Mutsuko Ohnishi; Toshihiko Shiroishi; Akihiro Imura; M. Shawkat Razzaque; Yo-ichi Nabeshima

Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.

Collaboration


Dive into the Masaru Tamura's collaboration.

Top Co-Authors

Avatar

Toshihiko Shiroishi

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Shigeharu Wakana

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Shigekazu Tanaka

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Takanori Amano

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Akiteru Maeno

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Tomoko Sagai

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoriko Kato

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Asanobu Kitamoto

National Institute of Informatics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge