Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Akiteru Maeno is active.

Publication


Featured researches published by Akiteru Maeno.


Genome Research | 2008

Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits

Toyoyuki Takada; Akihiko Mita; Akiteru Maeno; Takahiro Sakai; Hiroshi Shitara; Yoshiaki Kikkawa; Kazuo Moriwaki; Hiromichi Yonekawa; Toshihiko Shiroishi

Consomic strains, also known as chromosome substitution strains, are powerful tools for assigning polygenes that control quantitative complex traits to specific chromosomes. Here, we report generation of a full set of mouse consomic strains, in which each chromosome of the common laboratory strain C57BL/6J (B6) is replaced by its counterpart from the inbred strain MSM/Ms, which is derived from Japanese wild mouse, Mus musculus molossinus. The genome sequence of MSM/Ms is divergent from that of B6, whose genome is predominantly derived from Western European wild mouse, Mus musculus domesticus. MSM/Ms exhibits a number of quantitative complex traits markedly different from those of B6. We systematically determined phenotypes of these inter-subspecific consomic strains, focusing on complex traits related to reproduction, growth, and energy metabolism. We successfully detected more than 200 statistically significant QTLs affecting 26 traits. Furthermore, phenotyping of the consomic strains revealed that the measured values for quantitative complex traits often far exceed the range between B6 host and MSM/Ms donor strains; this may result from segregation of alleles or nonadditive interactions among multiple genes derived from the two mouse subspecies (that is, epistasis). Taken together, the results suggest that the inter-subspecific consomic strains will be very useful for identification of latent genetic components underlying quantitative complex traits.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Apoptosis in neural crest cells by functional loss of APC tumor suppressor gene

Sumitaka Hasegawa; Tomoyuki Sato; Hiroshi Akazawa; Hitoshi Okada; Akiteru Maeno; Masaki Ito; Yoshinobu Sugitani; Hiroyuki Shibata; Jun-ichi Miyazaki; Motoya Katsuki; Yasutaka Yamauchi; Ken Ichi Yamamura; Shigeru Katamine; Tetsuo Noda

Apc is a gene associated with familial adenomatous polyposis coli (FAP) and its inactivation is a critical step in colorectal tumor formation. The protein product, adenomatous polyposis coli (APC), acts to down-regulate intracellular levels of β-catenin, a key signal transducer in the Wnt signaling. Conditional targeting of Apc in the neural crest of mice caused massive apoptosis of cephalic and cardiac neural crest cells at about 11.5 days post coitum, resulting in craniofacial and cardiac anomalies at birth. Notably, the apoptotic cells localized in the regions where β-catenin had accumulated. In contrast to its role in colorectal epithelial cells, inactivation of APC leads to dysregulation of β-catenin/Wnt signaling with resultant apoptosis in certain tissues including neural crest cells.


Human Molecular Genetics | 2013

Overdosage of Hand2 causes limb and heart defects in the human chromosomal disorder partial trisomy distal 4q

Masaru Tamura; Masaki Hosoya; Motoi Fujita; Tomoko Iida; Takanori Amano; Akiteru Maeno; Taro Kataoka; Taketo Otsuka; Shigekazu Tanaka; Shuichi Tomizawa; Toshihiko Shiroishi

Partial trisomy distal 4q (denoted 4q+) is a human chromosomal disorder caused by duplication of the distal end of the long arm of chromosome 4 (Chr4). This disorder manifests typical phenotypes, including craniofacial, renal, heart and thumb developmental defects. Although these clinical features are likely caused by a dosage imbalance in the gene network involving the trisomic region, the causative gene or genes and the molecular bases are largely unknown. Here, we report mouse Recombination-induced mutation 4 (Rim4) as a model animal of 4q+. The Rim4 genome contains an insertion of a 6.5 Mb fragment from mouse chromosome 8 into chromosome 6. This insertion fragment contains 17 genes, including Hand2, that encode the basic helix-loop-helix transcription factor and is syntenic to the distal end of human Chr4, 4q32.3 to 4q34.1, which is responsible for 4q+. A comparison of phenotypes between patients with Rim4 and 4q+ revealed that Rim4 shows direct parallels with many phenotypes of 4q+ such as craniofacial, heart, cervical vertebra and limb deformities. Rebalancing the gene dosage by a genetic cross with Hand2 knockout mice ameliorated symptoms of the heart and limb deformities of Rim4. Conversely, an increase in copy number of Hand2 in wild-type mice recaptures the heart and limb deformities of Rim4. Our results collectively demonstrate that overdosage of Hand2 is a major cause for at least the limb and heart phenotypes of 4q+ and that mouse Rim4 provides a unique animal model for understanding the molecular bases underlying the complex phenotypes of 4q+.


Scientific Reports | 2015

Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes

Yoko Nabeshima; Miwa Washida; Masaru Tamura; Akiteru Maeno; Mutsuko Ohnishi; Toshihiko Shiroishi; Akihiro Imura; M. Shawkat Razzaque; Yo-ichi Nabeshima

Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho-/- (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl-/- mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl-/- mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.


Nature Communications | 2017

Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder

Tomoko Sagai; Takanori Amano; Akiteru Maeno; Tetsuaki Kimura; Masatoshi Nakamoto; Yusuke Takehana; Kiyoshi Naruse; Norihiro Okada; Hiroshi Kiyonari; Toshihiko Shiroishi

Shh signalling plays a crucial role for endoderm development. A Shh endoderm enhancer, MACS1, is well conserved across terrestrial animals with lungs. Here, we first show that eliminating mouse MACS1 causes severe defects in laryngeal development, indicating that MACS1-directed Shh signalling is indispensable for respiratory organogenesis. Extensive phylogenetic analyses revealed that MACS1 emerged prior to the divergence of cartilaginous and bony fishes, and even euteleost fishes have a MACS1 orthologue. Meanwhile, ray-finned fishes evolved a novel conserved non-coding sequence in the neighbouring region. Transgenic assays showed that MACS1 drives reporter expression ventrally in laryngeal epithelium. This activity has been lost in the euteleost lineage, and instead, the conserved non-coding sequence of euteleosts acquired an enhancer activity to elicit dorsal epithelial expression in the posterior pharynx and oesophagus. These results implicate that evolution of these two enhancers is relevant to the morphological transition from ventral lungs to dorsal gas bladder.


The Plant Cell | 2017

KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize.

Katsutoshi Tsuda; María Jazmín Abraham-Juárez; Akiteru Maeno; Zhaobin Dong; Dale N. Aromdee; Robert B. Meeley; Toshihiko Shiroishi; Ken-Ichi Nonomura; Sarah Hake

Maize BLH transcription factors maintain the intercalary meristems to ensure sufficient internode elongation and prevent vein anastomosis to pattern the scattered veins in monocot stems. Monocot stems lack the vascular cambium and instead have characteristic structures in which intercalary meristems generate internodes and veins remain separate and scattered. However, developmental processes of these unique structures have been poorly described. BELL1-like homeobox (BLH) transcription factors (TFs) are known to heterodimerize with KNOTTED1-like homeobox TFs to play crucial roles in shoot meristem maintenance, but their functions are elusive in monocots. We found that maize (Zea mays) BLH12 and BLH14 have redundant but important roles in stem development. BLH12/14 interact with KNOTTED1 (KN1) in vivo and accumulate in overlapping domains in shoot meristems, young stems, and provascular bundles. Similar to kn1 loss-of-function mutants, blh12 blh14 (blh12/14) double mutants fail to maintain axillary meristems. Unique to blh12/14 is an abnormal tassel branching and precocious internode differentiation that results in dwarfism and reduced veins in stems. Micro-computed tomography observation of vascular networks revealed that blh12/14 double mutants had reduced vein number due to fewer intermediate veins in leaves and precocious anastomosis in young stems. Based on these results, we propose two functions of BLH12/14 during stem development: (1) maintaining intercalary meristems that accumulate KN1 and prevent precocious internode differentiation and (2) preventing precocious anastomosis of provascular bundles in young stems to ensure the production of sufficient independent veins.


Biochemical and Biophysical Research Communications | 2015

Transmitochondrial mito-miceΔ and mtDNA mutator mice, but not aged mice, share the same spectrum of musculoskeletal disorders

Takayuki Mito; Hikari Ishizaki; Michiko Suzuki; Hitomi Morishima; Azusa Ota; Kaori Ishikawa; Kazuto Nakada; Akiteru Maeno; Toshihiko Shiroishi; Jun-Ichi Hayashi

The spectra of phenotypes associated with aging and mitochondrial diseases sometimes appear to overlap with each other. We used aged mice and a mouse model of mitochondrial diseases (transmitochondrial mito-miceΔ with deleted mtDNA) to study whether premature aging phenotypes observed in mtDNA mutator mice are associated with aging or mitochondrial diseases. Here, we provide convincing evidence that all the mice examined had musculoskeletal disorders of osteoporosis and muscle atrophy, which correspond to phenotypes prevalently observed in the elderly. However, precise investigation of musculoskeletal disorders revealed that the spectra of osteoporosis and muscle atrophy phenotypes in mtDNA mutator mice were very close to those in mito-miceΔ, but different from those of aged mice. Therefore, mtDNA mutator mice and mito-miceΔ, but not aged mice, share the spectra of musculoskeletal disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Enhancer adoption caused by genomic insertion elicits interdigital Shh expression and syndactyly in mouse

Kousuke Mouri; Tomoko Sagai; Akiteru Maeno; Takanori Amano; Atsushi Toyoda; Toshihiko Shiroishi

Significance In this study, we reexamined an old mouse mutant named Hammer toe (Hm), which arose spontaneously almost a half century ago and exhibits a limb phenotype with webbing. We revealed that a 150-kb noncoding genomic fragment that was originally located in chromosome 14 has been inserted into a genomic region proximal to Sonic hedgehog (Shh), located in chromosome 5. This inserted fragment possesses enhancer activity to induce Shh expression in the interdigital regions in Hm, which in turn down-regulates bone morphogenetic protein signaling and eventually results in syndactyly and web formation. Since the donor fragment residing in chromosome 14 has enhancer activity to induce interdigital gene expression, the Hm mutation appears to be an archetypal case of enhancer adoption. Acquisition of new cis-regulatory elements (CREs) can cause alteration of developmental gene regulation and may introduce morphological novelty in evolution. Although structural variation in the genome generated by chromosomal rearrangement is one possible source of new CREs, only a few examples are known, except for cases of retrotransposition. In this study, we show the acquisition of novel regulatory sequences as a result of large genomic insertion in the spontaneous mouse mutation Hammer toe (Hm). Hm mice exhibit syndactyly with webbing, due to suppression of interdigital cell death in limb development. We reveal that, in the Hm genome, a 150-kb noncoding DNA fragment from chromosome 14 is inserted into the region upstream of the Sonic hedgehog (Shh) promoter in chromosome 5. Phenotyping of mouse embryos with a series of CRISPR/Cas9-aided partial deletion of the 150-kb insert clearly indicated that two different regions are necessary for the syndactyly phenotype of Hm. We found that each of the two regions contains at least one enhancer for interdigital regulation. These results show that a set of enhancers brought by the large genomic insertion elicits the interdigital Shh expression and the Hm phenotype. Transcriptome analysis indicates that ectopic expression of Shh up-regulates Chordin (Chrd) that antagonizes bone morphogenetic protein signaling in the interdigital region. Indeed, Chrd-overexpressing transgenic mice recapitulated syndactyly with webbing. Thus, the Hm mutation provides an insight into enhancer acquisition as a source of creation of novel gene regulation.


Scientific Reports | 2017

SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development

Tomoko Sagai; Takanori Amano; Akiteru Maeno; Hiroshi Kiyonari; Hyejin Seo; Sung-Won Cho; Toshihiko Shiroishi

Interaction between the epithelium and mesenchyme coordinates patterning and differentiation of oral cavity structures including teeth, palatal rugae and tongue papillae. SHH is one of the key signaling molecules for this interaction. Epithelial expression of Shh in the tooth buds and tongue papillae is regulated by at least two enhancers, MRCS1 and MFCS4. However, it is unclear how the two enhancers cooperate to regulate Shh. Here, we found that simultaneous deletion of MRCS1 and MFCS4 results in the formation of a supernumerary tooth in front of the first molar. Since deletion of either single enhancer barely affects tooth development, MRCS1 and MFCS4 evidently act in a redundant fashion. Binding motifs for WNT signaling mediators are shared by MRCS1 and MFCS4, and play a central role in regulating Shh expression, indicating that the two redundant enhancers additively exert their Shh regulation by responding to WNT signal input.


bioRxiv | 2018

doublesex regulates sexually dimorphic beetle horn formation by integrating spatial and temporal developmental contexts in the Japanese rhinoceros beetle Trypoxylus dichotomus

Shinichi Morita; Toshiya Ando; Akiteru Maeno; Takeshi Mizutani; Mutsuki Mase; Shuji Shigenobu; Teruyuki Niimi

Many scarab beetles have sexually dimorphic exaggerated horns that are an evolutionary novelty. Since the shape, number, size, and location of horns are highly diverged within Scarabaeidae, beetle horns are an attractive model for studying the evolution of sexually dimorphic and novel traits. In beetles including the Japanese rhinoceros beetle Trypoxylus dichotomus, the sex determination gene doublesex (dsx) plays a crucial role in sexually dimorphic horn formation during larval-pupal development. However, knowledge of when and how dsx drives the gene regulatory network (GRN) for horn formation to form sexually dimorphic horns during development remains elusive. To address this issue, we identified a Trypoxylus-ortholog of the sex determination gene, transformer (tra), that regulates sex-specific splicing of the dsx pre-mRNA, and whose loss of function results in sex transformation. By knocking down tra function at multiple developmental timepoints during larval-pupal development, we estimated the onset when the sex-specific GRN for horn formation is driven. In addition, we also revealed that dsx regulates different aspects of morphogenetic activities during the prepupal and pupal developmental stages to form appropriate morphologies of pupal head and thoracic horn primodia as well as those of adult horns. Based on these findings, we discuss the evolutionary developmental background of sexually dimorphic trait growth in horned beetles.

Collaboration


Dive into the Akiteru Maeno's collaboration.

Top Co-Authors

Avatar

Toshihiko Shiroishi

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Masaru Tamura

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Takanori Amano

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Taro Kataoka

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Tomoko Sagai

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Toyoda

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge