Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Maeda is active.

Publication


Featured researches published by Masashi Maeda.


Brain Research | 2003

Neuroprotective action of tacrolimus (FK506) in focal and global cerebral ischemia in rodents: dose dependency, therapeutic time window and long-term efficacy.

Yasuhisa Furuichi; Kiyotaka Katsuta; Masashi Maeda; Noriko Ueyama; Akira Moriguchi; Nobuya Matsuoka; Toshio Goto; Takehiko Yanagihara

Tacrolimus (FK506), a potent immunosuppressive drug, is effective in attenuating brain infarction after cerebral ischemia. However, there has been no report characterizing the neuroprotective action and therapeutic time window of tacrolimus systematically using different types of stroke models and extended observation periods. Therefore, we evaluated the neuroprotective effect of tacrolimus in three different animal models of cerebral ischemia: transient and permanent focal ischemia in rats and transient global ischemia in gerbils. Tacrolimus at doses higher than 0.1 mg/kg (i.v.) produced a statistically significant reduction in ischemic brain damage following permanent and transient focal ischemia in rats when administered immediately after the onset of ischemia. Tacrolimus (1 mg/kg, i.v.) demonstrated similar neuroprotective activity even after delayed administration (2 h after permanent or 1 h after transient focal ischemia). The neuroprotective effect of tacrolimus was still present 2 weeks after transient focal ischemia and 1 week after permanent focal ischemia. After transient global ischemia in gerbils, tacrolimus (1 mg/kg, i.v.) given immediately after reperfusion also produced long-lasting neuroprotective effects with a protective time-window of 1-2 h. Taken together, the results clearly indicate that tacrolimus exerts potent, long-term neuroprotective effects with a favorable therapeutic time-window, regardless of the model of cerebral ischemia. These results strengthen the notion that tacrolimus might be of clinical value for the treatment of acute stroke.


Experimental Neurology | 2006

Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia

Daisuke Koketsu; Yasuhisa Furuichi; Masashi Maeda; Nobuya Matsuoka; Yusei Miyamoto; Tatsuhiro Hisatsune

Adult neurogenesis is modulated by growth factors, physical conditions, and other alterations in the physical microenvironment. We studied the effects of focal ischemia on neurogenesis in the subventricular zone (SVZ), olfactory bulb (OB), and hippocampal dentate gyrus (DG) (known to be persistent neurogenic regions) in the adult non-human primate, the cynomolgus monkey. Three monkeys underwent middle cerebral artery occlusion-induced focal ischemia and were given multiple BrdU injections during the first 2 weeks after ischemia. Twenty-eight days later, the animals were perfused. The number of new neurons (3182 +/- 408/mm3) in the ipsilateral DG of ischemic monkeys was 4.7-fold that in the DG of non-operated monkeys. The number of new neurons (9176 +/- 2295/mm3) in the ipsilateral olfactory bulb of ischemic monkeys was 18.0-fold that in normal olfactory bulb. These observations suggest an increase in the number of new OB neurons, as well as new DG neurons, after focal ischemia in a primate. This substantial increase in new neurons after focal ischemia could result from the enhancement of cell proliferation rather than a change in the rate of cell commitment. Of the three monkeys subjected to ischemia, only one animal possessed a unique progenitor cell type at the most anterior aspect of the ipsilateral SVZ. Within this region, a short migration (approximately 500 microm) of doublecortin-expressing immature neuronal progenitor cells was observed.


Journal of Cerebral Blood Flow and Metabolism | 2002

A Combined Treatment with Tacrolimus (FK506) and Recombinant Tissue Plasminogen Activator for Thrombotic Focal Cerebral Ischemia in Rats: Increased Neuroprotective Efficacy and Extended Therapeutic Time Window

Masashi Maeda; Yasuhisa Furuichi; Noriko Ueyama; Akira Moriguchi; Natsuki Satoh; Nobuya Matsuoka; Toshio Goto; Takehiko Yanagihara

The authors evaluated the therapeutic efficacy of tacrolimus (FK506), administered alone or in combination with recombinant tissue plasminogen activator (t-PA), on brain infarction following thrombotic middle cerebral artery (MCA) occlusion. Thrombotic occlusion of the MCA was induced by a photochemical reaction between rose bengal and green light in Sprague-Dawley rats, and the volume of ischemic brain damage was determined 24 hours later. Intravenous administration of tacrolimus or t-PA dose-dependently reduced the volume of ischemic brain infarction, whether administered immediately or 1 hour after MCA occlusion. When tacrolimus or t-PA was administered 2 hours after MCA occlusion, each drug showed a tendency to reduce ischemic brain damage. However, combined treatment with both drugs resulted in a significant reduction in ischemic brain damage. On administration 3 hours after MCA occlusion, tacrolimus alone showed no effect, and t-PA tended to worsen ischemic brain damage. However, the combined treatment with both drugs not only ameliorated the worsening trend seen with t-PA alone, but also tended to reduce ischemic brain damage. In conclusion, tacrolimus, used in combination with t-PA, augmented therapeutic efficacy on brain damage associated with focal ischemia and extended the therapeutic time window compared to single-drug treatments.


Journal of Cerebral Blood Flow and Metabolism | 2003

Tacrolimus, a Potential Neuroprotective Agent, Ameliorates Ischemic Brain Damage and Neurologic Deficits after Focal Cerebral Ischemia in Nonhuman Primates

Yasuhisa Furuichi; Masashi Maeda; Akira Moriguchi; Taiji Sawamoto; Akio Kawamura; Nobuya Matsuoka; Seitaro Mutoh; Takehiko Yanagihara

Tacrolimus (FK506), an immunosuppressive drug, is known to have potent neuroprotective activity and attenuate cerebral infarction in experimental models of stroke. Here we assess the neuroprotective efficacy of tacrolimus in a nonhuman primate model of stroke, photochemically induced thrombotic occlusion of the middle cerebral artery (MCA) in cynomolgus monkeys. In the first experiment, tacrolimus (0.01, 0.032, or 0.1 mg/kg) was intravenously administered immediately after MCA occlusion, and neurologic deficits and cerebral infarction volumes were assessed 24 hours after the ischemic insult. Tacrolimus dose-dependently reduced neurologic deficits and infarction volume in the cerebral cortex, with statistically significant amelioration of neurologic deficits at 0.032 and 0.1 mg/kg and significant reduction of infarction at 0.1 mg/kg. In the second experiment, the long-term efficacy of tacrolimus on neurologic deficits and cerebral infarction was assessed. Vehicle-treated monkeys exhibited persistent and severe deficits in motor and sensory function for up to 28 days. A single intravenous bolus injection of tacrolimus (0.1 or 0.2 mg/kg) produced long-lasting amelioration of neurologic deficits and significant reduction of infarction volume. In conclusion, we have provided compelling evidence that a single dose of tacrolimus not only reduces brain infarction but also ameliorates long-term neurologic deficits in a nonhuman primate model of stroke, strengthening the view that tacrolimus might be beneficial in treating stroke patients.


Experimental Neurology | 2007

Therapeutic time window of tacrolimus (FK506) in a nonhuman primate stroke model: comparison with tissue plasminogen activator.

Yasuhisa Furuichi; Masashi Maeda; Nobuya Matsuoka; Seitaro Mutoh; Takehiko Yanagihara

Tacrolimus (FK506), an immunosuppressive drug, has been shown to exert a potent neuroprotective activity when administered immediately after occlusion of the middle cerebral artery (MCA) in a nonhuman primate model of stroke. Here, we assessed the neuroprotective efficacy of tacrolimus with delayed treatment using the same model and compared with that of recombinant tissue plasminogen activator (rt-PA). Ischemic insult was induced by photochemically induced thrombotic occlusion of MCA in cynomolgus monkeys, and tacrolimus (0.2 mg/kg) and/or rt-PA (1.0 mg/kg) was intravenously administered 2 h after MCA occlusion. In another experiment, tacrolimus (0.1 mg/kg) was administered 4 h after MCA occlusion. Neurological deficits were monitored for 28 days after the ischemic insult and cerebral infarct volumes were measured with brain slices. With drug administration 2 h after the ischemic insult, tacrolimus significantly reduced neurological deficits and infarct volumes in the cerebral cortex without affecting the recanalization pattern in the MCA, however, rt-PA did not significantly improve neurological deficits or infarct volumes, even though it increased the recanalization rate of the occluded MCA. Combined treatment with tacrolimus and rt-PA exerted additional protection. Administration of tacrolimus 4 h after the ischemic insult still showed significant amelioration of neurological deficits. These results suggested that tacrolimus had a wider therapeutic time window than rt-PA in the nonhuman primate stroke model.


Journal of Neuroscience Methods | 2005

Characterization of a novel thrombotic middle cerebral artery occlusion model in monkeys that exhibits progressive hypoperfusion and robust cortical infarction.

Masashi Maeda; Hiroyuki Takamatsu; Yasuhisa Furuichi; Akihiko Noda; Yuji Awaga; Mitsuyoshi Tatsumi; Masashi Yamamoto; Rikiya Ichise; Shintaro Nishimura; Nobuya Matsuoka

In an attempt to establish a thrombotic middle cerebral artery (MCA) occlusion model using cynomolgus monkeys, we measured the blood flow in the main MCA tract and cerebral cortex, brain damage, and neurological deficits, and compared them with those of mechanical MCA occlusion model. Thrombotic occlusion was induced photochemically by green light application on the MCA following rose bengal treatment; mechanical occlusion was induced by MCA clipping for 3h. Patency of the main MCA tract showed two patterns in the thrombotic model: permanent occlusion or cyclical flow reduction (CFR). Regional cerebral blood flow (rCBF) decreased during occlusion followed by post-ischemic hyperperfusion in the clipping model, whereas rCBF reduction expanded time-dependently in the thrombotic occlusion model. Brain infarction and neurological scores in the thrombotic occlusion model were significantly larger than those in the clipping occlusion model. In histological assessment, microthrombi containing myeloperoxidase- and fibrinogen-positive cells were observed in the cortex following the thrombotic but not clipping occlusion. These results collectively suggest that this thrombotic MCA occlusion model, because it shows impairment of cerebral microcirculation, could provide a vital platform for understanding progressive ischemia as well as for evaluating potential therapeutic drugs.


Brain Research | 2009

Tacrolimus (FK506) suppresses rt-PA-induced hemorrhagic transformation in a rat thrombotic ischemia stroke model

Masashi Maeda; Yasuhisa Furuichi; Takahisa Noto; Nobuya Matsuoka; Seitaro Mutoh; Yukio Yoneda

The aim of this study was to evaluate the effect of tacrolimus on recombinant tissue-plasminogen activator (rt-PA)-induced hemorrhagic transformation, and to characterize its suppressive action for hemorrhage. Thrombotic occlusion of the middle cerebral artery (MCA) was induced by photochemical reaction in spontaneously hypertensive rats, and hemorrhagic scores and brain damage were measured 24 h after MCA occlusion. Administration of rt-PA 3 h after MCA occlusion significantly worsened spontaneous hemorrhagic changes and tended to aggravate brain damage. Hematoma was observed in 7 of 15 rats treated with rt-PA, and 0 of 15 rats in the control group. Tacrolimus alone administered intravenously 3 h after MCA occlusion did not produce any hemorrhagic changes. The combined treatment of tacrolimus followed by rt-PA significantly decreased the incidence of hematoma and brain damage in comparison with that of the rt-PA treated group. Permeability of the blood-brain-barrier (BBB) detected by extravasations of Evans blue was investigated 6 h after MCA occlusion, as was the integrity of microvascular endothelial cells as determined by immunohistochemical assessment of the prevalence of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31). Combined treatment of rt-PA with tacrolimus reduced the rt-PA-induced extravasation of Evans blue and preserved CD31-positive cells in the ischemic hemisphere. Thus, tacrolimus was able to reduce the rt-PA-induced hemorrhagic transformation, which might be due to the protective effects on cerebral microvascular endothelial cells after thrombotic cerebral ischemia during the acute phase of cerebral ischemia. In conclusion, the combination of rt-PA with tacrolimus may be useful for decreasing the risk of thrombolytic therapy.


Journal of Cerebral Blood Flow and Metabolism | 2005

FK419, a nonpeptide platelet glycoprotein IIb/IIIa antagonist, ameliorates brain infarction associated with thrombotic focal cerebral ischemia in monkeys: comparison with tissue plasminogen activator.

Masashi Maeda; Akira Moriguchi; Kayoko Mihara; Toshiaki Aoki; Hiroyuki Takamatsu; Nobuya Matsuoka; Seitaro Mutoh; Toshio Goto

The binding of platelet glycoprotein (GP) IIb/IIIa to fibrinogen is the final common pathway in platelet aggregation, a process known to play a key role in the pathogenesis of ischemic brain damage. We compared the effects of FK419, a novel nonpeptide GPIIb/IIIa antagonist, with recombinant tissue plasminogen activator (rt-PA) on middle cerebral artery (MCA) patency and ischemic brain damage in a thrombotic stroke model in squirrel monkeys. FK419 not only inhibited in vitro platelet aggregation (IC50: 88 nmol/L), but also showed disaggregatory activity to aggregated platelet (EC50: 286 nmol/L). FK419 dose-dependently reduced the time to first reperfusion and total occlusion time of MCA blood flow when administered immediately after the termination of photoirradiation. FK419 reduced cerebral infarction and ameliorated neurologic deficits with similar dose-dependency. Although rt-PA reduced the time to first reperfusion, total occlusion time, and cerebral infarction, it did not significantly ameliorate neurologic deficits and induced petechial intracerebral hemorrhages. These results indicate: (1) FK419 restored cerebral blood flow after thrombotic occlusion of MCA, (2) FK419 reduced ischemic brain injury by its thrombolytic actions in a non-human primate stroke model, and (3) FK419 has superior antithrombotic efficacy and is safer than rt-PA.


PLOS ONE | 2014

ASP4058, a novel agonist for sphingosine 1-phosphate receptors 1 and 5, ameliorates rodent experimental autoimmune encephalomyelitis with a favorable safety profile.

Rie Yamamoto; Youhei Okada; Jun Hirose; Tadatsura Koshika; Yuka Kawato; Masashi Maeda; Rika Saito; Kazuyuki Hattori; Hironori Harada; Yasuhisa Nagasaka; Tatsuaki Morokata

Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that acts through the members of a family of five G protein-coupled receptors (S1P1–S1P5). S1P1 is a major regulator of lymphocyte trafficking, and fingolimod, whose active metabolite fingolimod phosphate acts as a nonselective S1P receptor agonist, exerts its immunomodulatory effect, at least in part, by regulating the lymphocyte trafficking by inducing down regulation of lymphocyte S1P1. Here, we detail the pharmacological profile of 5-{5-[3-(trifluoromethyl)-4-{[(2S)-1,1,1-trifluoropropan-2-yl]oxy}phenyl]-1,2,4-oxadiazol-3-yl}-1H-benzimidazole (ASP4058), a novel next-generation S1P receptor agonist selective for S1P1 and S1P5. ASP4058 preferentially activates S1P1 and S1P5 compared with S1P2, 3, 4 in GTPγS binding assays in vitro. Oral administration of ASP4058 reduced the number of peripheral lymphocytes and inhibited the development of experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Further, ASP4058 prevented relapse of disease in a mouse model of relapsing-remitting EAE. Although these immunomodulatory effects were comparable to those of fingolimod, ASP4058 showed a wider safety margin than fingolimod for bradycardia and bronchoconstriction in rodents. These observations suggest that ASP4058 represents a new therapeutic option for treating multiple sclerosis that is safer than nonselective S1P receptor agonists such as fingolimod.


Journal of Cerebral Blood Flow and Metabolism | 2005

FK419, a novel nonpeptide GPIIb/IIIa antagonist, restores microvascular patency and improves outcome in the guinea-pig middle cerebral artery thrombotic occlusion model: comparison with tirofiban

Akira Moriguchi; Masashi Maeda; Kayoko Mihara; Toshiaki Aoki; Nobuya Matsuoka; Seitaro Mutoh

The antithrombotic efficacy of FK419, a novel nonpeptide platelet glycoprotein IIb/IIIa antagonist, was compared with tirofiban in guinea-pigs. FK419 and tirofiban similarly inhibited platelet aggregation in vitro (IC50 values: 0.43 ± 0.076 and 0.41 ± 0.053 μmol/L) and dispersed aggregated platelets (EC50 values: 2.3 ± 0.88 and 2.0 ± 0.81 μmol/L). FK419 inhibited retention of platelets and neutrophils in a collagen-coated bead column with greater potency than tirofiban (IC50 values of 0.90 ± 0.133 and 2.4 ± 0.21 μmol/L for platelet retention and 0.32 ± 0.078 and 0.57 ± 0.180 μmol/L for neutrophil retention). When FK419 or tirofiban were administered after photochemically induced middle cerebral artery (MCA) occlusion in guinea-pigs, they dose-dependently improved MCA patency. FK419 reduced neurological deficits and ischemic brain damage in a dose-dependent fashion, whereas tirofiban did not. Reduced regional cerebral blood flow in the striatum gradually returned to the preoccluded level with FK419 treatment; however, no restoration was observed with tirofiban even though the MCA was recanalized. These results indicate that FK419 ameliorates ischemic brain damage by not only lysing the obstructive thrombus in MCA but also preventing or restoring microcirculation deficits after occlusion/reperfusion, suggesting that FK419 would be an attractive intervention for the treatment of ischemic stroke patients.

Collaboration


Dive into the Masashi Maeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge