Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masashi Sakurai is active.

Publication


Featured researches published by Masashi Sakurai.


Journal of Veterinary Medical Science | 2014

Demonstration of the Clathrin- and Caveolin-Mediated Endocytosis at the Maternal–Fetal Barrier in Mouse Placenta after Intravenous Administration of Gold Nanoparticles

Kasem Rattanapinyopituk; Akinori Shimada; Takehito Morita; Masashi Sakurai; Atsushi Asano; Tatsuya Hasegawa; Ken-ichiro Inoue; Hirohisa Takano

ABSTRACT Exposure to nanoparticles during pregnancy is a public concern, because nanoparticles may pass from the mother to the fetus across the placenta. The purpose of this study was to determine the possible translocation pathway of gold nanoparticles across the maternal–fetal barrier as well as the toxicity of intravenously administered gold nanoparticles to the placenta and fetus. Pregnant ICR mice were intravenously injected with 0.01% of 20- and 50-nm gold nanoparticle solutions on the 16th and 17th days of gestation. There was no sign of toxic damage to the placentas as well as maternal and fetal organs of the mice treated with 20- and 50-nm gold nanoparticles. ICP-MS analysis demonstrated significant amounts of gold deposited in the maternal livers and placentas, but no detectable level of gold in the fetal organs. However, electron microscopy demonstrated an increase of endocytic vesicles in the cytoplasm of syncytiotrophoblasts and fetal endothelial cells in the maternal–fetal barrier of mice treated with gold nanoparticles. Clathrin immunohistochemistry and immunoblotting showed increased immunoreactivity of clathrin protein in the placental tissues of mice treated with 20- and 50-nm gold nanoparticles; clathrin immunopositivity was observed in syncytiotrophoblasts and fetal endothelial cells. In contrast, caveolin-1 immunopositivity was observed exclusively in the fetal endothelium. These findings suggested that intravenous administration of gold nanoparticles may upregulate clathrin- and caveolin-mediated endocytosis at the maternal–fetal barrier in mouse placenta.


Stem Cells International | 2016

Establishment of a Novel Model for Anticancer Drug Resistance in Three-Dimensional Primary Culture of Tumor Microenvironment.

Tatsuya Usui; Masashi Sakurai; Shuhei Enjoji; Hideyoshi Kawasaki; Koji Umata; Takashi Ohama; Nobuyuki Fujiwara; Ryotaro Yabe; Shunya Tsuji; Hideyuki Yamawaki; Shoichi Hazama; Hiroko Takenouchi; Masao Nakajima; Ryouichi Tsunedomi; Nobuaki Suzuki; Hiroaki Nagano; Koichi Sato

Tumor microenvironment has been implicated in tumor development and progression. As a three-dimensional tumor microenvironment model, air liquid interface (ALI) organoid culture from oncogene transgenic mouse gastrointestinal tissues was recently produced. However, ALI organoid culture system from tissues of colorectal cancer patients has not been established. Here, we developed an ALI organoid model from normal and tumor colorectal tissues of human patients. Both organoids were successfully generated and showed cystic structures containing an epithelial layer and surrounding mesenchymal stromal cells. Structures of tumor organoids closely resembled primary tumor epithelium. Expression of an epithelial cell marker, E-cadherin, a goblet cell marker, MUC2, and a fibroblast marker, vimentin, but not a myofibroblast marker, α-smooth muscle actin (SMA), was observed in normal organoids. Expression of E-cadherin, MUC2, vimentin, and α-SMA was observed in tumor organoids. Expression of a cancer stem cell marker, LGR5 in tumor organoids, was higher than that in primary tumor tissues. Tumor organoids were more resistant to toxicity of 5-fluorouracil and Irinotecan than colorectal cancer cell lines, SW480, SW620, and HCT116. These findings indicate that ALI organoid culture from colorectal cancer patients may become a novel model that is useful for examining resistance to chemotherapy in tumor microenvironment.


American Journal of Veterinary Research | 2013

Relationship of angiogenesis and microglial activation to seizure-induced neuronal death in the cerebral cortex of Shetland Sheepdogs with familial epilepsy

Masashi Sakurai; Takehito Morita; Takashi Takeuchi; Akinori Shimada

OBJECTIVE To determine whether angiogenesis and microglial activation were related to seizure-induced neuronal death in the cerebral cortex of Shetland Sheepdogs with familial epilepsy. ANIMALS Cadavers of 10 Shetland Sheepdogs from the same family (6 dogs with seizures and 4 dogs without seizures) and 4 age-matched unrelated Shetland Sheepdogs. PROCEDURES Samples of brain tissues were collected after euthanasia and then fixed in neutral phosphate-buffered 10% formalin and routinely embedded in paraffin. The fixed samples were sectioned for H&E staining and immunohistochemical analysis. RESULTS Evidence of seizure-induced neuronal death was detected exclusively in samples of cerebral cortical tissue from the dogs with familial epilepsy in which seizures had been observed. The seizure-induced neuronal death was restricted to tissues from the cingulate cortex and sulci surrounding the cerebral cortex. In almost the same locations as where seizure-induced neuronal death was identified, microvessels appeared longer and more tortuous and the number of microvessels was greater than in the dogs without seizures and control dogs. Occasionally, the microvessels were surrounded by oval to flat cells, which had positive immunohistochemical results for von Willebrand factor. Immunohistochemical results for neurons and glial cells (astrocytes and microglia) were positive for vascular endothelial growth factor, and microglia positive for ionized calcium-binding adapter molecule 1 were activated (ie, had swollen cell bodies and long processes) in almost all the same locations as where seizure-induced neuronal death was detected. Double-label immunofluorescence techniques revealed that the activated microglia had positive results for tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor receptor 1. These findings were not observed in the cerebrum of dogs without seizures, whether the dogs were from the same family as those with epilepsy or were unrelated to them. CONCLUSIONS AND CLINICAL RELEVANCE Signs of angiogenesis and microglial activation corresponded with seizure-induced neuronal death in the cerebral cortex of Shetland Sheepdogs with familial epilepsy. Microglial activation induced by vascular endothelial growth factor and associated proinflammatory cytokine production may accelerate seizure-induced neuronal death in dogs with epilepsy.


Veterinary and Comparative Oncology | 2018

Oncolytic reovirus therapy: Pilot study in dogs with spontaneously occurring tumours

Chung Chew Hwang; Masaya Igase; Masashi Sakurai; Tomoya Haraguchi; K. Tani; Kazuhito Itamoto; T. Shimokawa; Munekazu Nakaichi; Yuki Nemoto; Shunsuke Noguchi; Matt Coffey; Masaru Okuda; Takuya Mizuno

Oncolytic virotherapy is a novel treatment involving replication-competent virus in the elimination of cancer. We have previously reported the oncolytic effects of reovirus in various canine cancer cell lines. This study aims to establish the safety profile of reovirus in dogs with spontaneously occurring tumours and to determine a recommended dosing regimen. Nineteen dogs with various tumours, mostly of advanced stages, were treated with reovirus, ranging from 1.0 × 108 to 5.0 × 109 TCID50 given as intratumour injection (IT) or intravenous infusion (IV) daily for up to 5 consecutive days in 1 or multiple treatment cycles. Adverse events (AEs) were graded according to the Veterinary Cooperative Oncology Group- Common Terminology Criteria for Adverse Events (VCOG-CTCAE) v1.1 guidelines. Viral shedding, neutralizing anti-reovirus antibody (NARA) production and immunohistochemical (IHC) detection of reovirus protein in the tumours were also assessed. AE was not observed in most dogs and events were limited to Grade I or II fever, vomiting, diarrhoea and inflammation of the injected tumour. No infectious virus was shed and all dogs had elevated NARA levels post-treatment. Although IHC results were only available in 6 dogs, 4 were detected positive for reovirus protein. In conclusion, reovirus is well-tolerated and can be given safely to tumour-bearing dogs according to the dosing regimen used in this study without significant concerns of viral shedding. Reovirus is also potentially effective in various types of canine tumours.


International Journal of Molecular Sciences | 2018

Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

Tatsuya Usui; Masashi Sakurai; Koji Umata; Mohamed Elbadawy; Takashi Ohama; Hideyuki Yamawaki; Shoichi Hazama; Hiroko Takenouchi; Masao Nakajima; Ryouichi Tsunedomi; Nobuaki Suzuki; Hiroaki Nagano; Koichi Sato; Masahiro Kaneda; Kazuaki Sasaki

Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI) method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU) and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61) decreases the cell viability of organoids compared with Notch (YO-01027, DAPT) and Wnt (WAV939, Wnt-C59) signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.


Physiological Reports | 2017

Establishment of a novel three‐dimensional primary culture model for hippocampal neurogenesis

Tatsuya Usui; Masashi Sakurai; Hideyoshi Kawasaki; Takashi Ohama; Hideyuki Yamawaki; Koichi Sato

New neurons are generated in the adult hippocampus throughout life and contribute to the functions of learning and memory. Nevertheless, the mechanisms by which disrupted neurogenesis regulates central nervous system (CNS) disorders are not fully understood. Here, we established a novel 3D culture system of hippocampal neurogenesis using air liquid interface (ALI) culture and Matrigel culture from mouse hippocampus tissues. After isolated mouse hippocampus tissue fragments were seeded into ALI wells and cultured in stemness‐stimulated media containing Wnt, EGF, Noggin and R‐spondin for 7 days, small spheres gradually appeared in the tissues. To identify the cell components, immunohistochemical and immunofluorescence staining were performed. Expression of a mature neuronal cell marker, NeuN was observed in the tissues just after seeding. Expression of a neural stem cell marker, Nestin was observed in the tissues at day 7. To differentiate the Nestin‐positive cells, they were passaged into Matrigel. Expression of Nestin but not an immature neuronal cell marker, doublecortin (DCX) was observed in the isolated cells. After 7 days of Matrigel culture, they showed the neurite outgrowth. Expression of Nestin was decreased compared with the one just after passaging, while DCX expression was increased. Western blotting analysis also showed Nestin expression was decreased, while expression of DCX, a neuronal cell marker, Tuj1 and a granule cell marker, Prox‐1 was increased. Here, we establish the 3D culture of hippocampus tissues that might become a novel in vitro tool for monitoring the process of hippocampal neurogenesis. Our model might shed light into the mechanisms of pathogenesis of CNS disorders.


Molecular Cancer Research | 2018

Stemness is Enhanced in Gastric Cancer by a SET/PP2A/E2F1 Axis

Shuhei Enjoji; Ryotaro Yabe; Shunya Tsuji; Kazuhiro Yoshimura; Hideyoshi Kawasaki; Masashi Sakurai; Yusuke Sakai; Hiroko Takenouchi; Shigefumi Yoshino; Shoichi Hazama; Hiroaki Nagano; Hiroko Oshima; Masanobu Oshima; Michael P. Vitek; Tetsuya Matsuura; Yoshitaka Hippo; Tatsuya Usui; Takashi Ohama; Koichi Sato

Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related deaths worldwide. Chemotherapies against gastric cancer often fail, with cancer recurrence due potentially to the persistence of cancer stem cells. This unique subpopulation of cells in tumors possesses the ability to self-renew and dedifferentiate. These cancer stem cells are critical for initiation, maintenance, metastasis, and relapse of cancers; however, the molecular mechanisms supporting cancer stemness remain largely unknown. Increased kinase and decreased phosphatase activity are hallmarks of oncogenic signaling. Protein phosphatase 2A (PP2A) functions as a tumor-suppressor enzyme, and elevated levels of SET/I2PP2A, an endogenous PP2A protein inhibitor, are correlated with poor prognosis of several human cancers. Here, it was determined that SET expression was elevated in tumor tissue in a gastric cancer mouse model system, and SET expression was positively correlated with poor survival of human gastric cancer patients. Mechanistically, SET knockdown decreased E2F1 levels and suppressed the stemness of cancer cell lines. Immunoprecipitations show SET associated with the PP2A–B56 complex, and the B56 subunit interacted with the E2F1 transcription factor. Treatment of gastric cancer cells with the SET-targeting drug OP449 increased PP2A activity, decreased E2F1 protein levels, and suppressed stemness of cancer cells. These data indicate that a SET/PP2A/E2F1 axis regulates cancer cell stemness and is a potential target for gastric cancer therapy. Implications: This study highlights the oncogenic role of SET/I2PP2A in gastric cancer and suggests that SET maintains cancer cell stemness by suppressing PP2A activity and stabilizing E2F1. Mol Cancer Res; 16(3); 554–63. ©2018 AACR.


Current protocols in immunology | 2018

Preparation of Human Primary Colon Tissue‐Derived Organoid Using Air Liquid Interface Culture

Tatsuya Usui; Masashi Sakurai; Koji Umata; Hideyuki Yamawaki; Takashi Ohama; Koichi Sato

In vitro analysis of intestinal epithelium has been hindered by a lack of suitable culture systems useful for gastrointestinal research. To overcome the problem, an air liquid interface (ALI) method using a collagen gel was established to culture three‐dimensional primary cells containing both primary epithelial and mesenchymal components from mouse gastrointestinal tissues. ALI organoids accurately recapitulate organ structures, multilineage differentiation, and physiology. Since ALI organoids from human tissues have not been produced, we modified the previous protocol for mouse ALI organoid culture to establish the culture system of ALI organoids from normal and tumor colorectal tissues of human patients. The current unit presents a protocol for preparation of the ALI organoid culture from normal and tumor colorectal tissues of human patients. ALI organoid culture from human tissues might be useful for examining not only resistance to chemotherapy in a tumor microenvironment but also toxic effects on organoids.


Journal of Veterinary Medical Science | 2017

Molecular cloning of canine Wilms’ Tumor 1 for immunohistochemical analysis in canine tissues

Osamu Sakai; Masashi Sakurai; Hiroki Sakai; Masahito Kubo; Hiroko Hiraoka; Kenji Baba; Masaru Okuda; Takuya Mizuno

Wilms’ tumor 1 (WT1) expression has been investigated in various human cancers as a target molecule for cancer immunotherapy. However, few studies have focused on WT1 expression in dogs. Firstly, cDNA of canine WT1 (cWT1) was molecularly cloned from normal canine kidney. The cross-reactivity of the anti-human WT1 monoclonal antibody (6F-H2) with cWT1 was confirmed via Western blotting using cells overexpressing cWT1. Immunohistochemical staining revealed that cWT1 expression was detected in all canine lymphoma tissues and in some normal canine tissues, including the kidney and lymph node. cWT1 is a potential immunotherapy target against canine cancers.


Cancer Science | 2017

Establishment of a dog primary prostate cancer organoid using the urine cancer stem cells

Tatsuya Usui; Masashi Sakurai; Shimpei Nishikawa; Koji Umata; Yuki Nemoto; Tomoya Haraguchi; Kazuhito Itamoto; Takuya Mizuno; Shunsuke Noguchi; Takashi Mori; Satomi Iwai; Takayuki Nakagawa; Hideyuki Yamawaki; Takashi Ohama; Koichi Sato

Dog spontaneously develop prostate cancer (PC) like humans. Because most dogs with PC have a poor prognosis, they could be used as a translational model for advanced PC in humans. Stem cell‐derived 3‐D organoid culture could recapitulate organ structures and physiology. Using patient tissues, a human PC organoid culture system was established. Recent study has shown that urine cells also possess the characteristic of stem cells. However, urine cell‐derived PC organoids have never been produced. Therefore, we generated PC organoids using the dog urine samples. Urine organoids were successfully generated from each dog with PC. Each organoid showed cystic structures and resembled the epithelial structures of original tissues. Expression of an epithelial cell marker, E‐cadherin, and a myofibloblast marker, α‐SMA, was observed in the urine organoids. The organoids also expressed a basal cell marker, CK5, and a luminal cell marker, CK8. CD49f‐sorted basal cell organoids rapidly grew compared with CD24‐sorted luminal cell organoids. The population of CD44‐positive cells was the highest in both organoids and the original urine cells. Tumors were successfully formed with the injection of the organoids into immunodeficient mice. Treatment with a microtubule inhibitor, docetaxel, but not a cyclooxygenase inhibitor, piroxicam, and an mTOR inhibitor, rapamycin, decreased the cell viability of organoids. Treatment with a Hedgehog signal inhibitor, GANT61, increased the radiosensitivity in the organoids. These findings revealed that PC organoids using urine might become a useful tool for investigating the mechanisms of the pathogenesis and treatment of PC in dogs.

Collaboration


Dive into the Masashi Sakurai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge