Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masataka Kajikawa is active.

Publication


Featured researches published by Masataka Kajikawa.


The Plant Cell | 2010

Clustered transcription factor genes regulate nicotine biosynthesis in tobacco.

Tsubasa Shoji; Masataka Kajikawa; Takashi Hashimoto

This work examines the molecular lesions responsible for the low-nicotine phenotype of a classical tobacco mutant. Extensive duplications of genes encoding jasmonate-responsive transcription factors, found at the NIC2 locus, offer new insights into how regulatory genes for alkaloid biosynthesis are organized and evolved. Tobacco (Nicotiana tabacum) synthesizes nicotine and related pyridine alkaloids in the root, and their synthesis increases upon herbivory on the leaf via a jasmonate-mediated signaling cascade. Regulatory NIC loci that positively regulate nicotine biosynthesis have been genetically identified, and their mutant alleles have been used to breed low-nicotine tobacco varieties. Here, we report that the NIC2 locus, originally called locus B, comprises clustered transcription factor genes of an ethylene response factor (ERF) subfamily; in the nic2 mutant, at least seven ERF genes are deleted altogether. Overexpression, suppression, and dominant repression experiments using transgenic tobacco roots showed both functional redundancy and divergence among the NIC2-locus ERF genes. These transcription factors recognized a GCC-box element in the promoter of a nicotine pathway gene and specifically activated all known structural genes in the pathway. The NIC2-locus ERF genes are expressed in the root and upregulated by jasmonate with kinetics that are distinct among the members. Thus, gene duplication events generated a cluster of highly homologous transcription factor genes with transcriptional and functional diversity. The NIC2-locus ERFs are close homologs of ORCA3, a jasmonate-responsive transcriptional activator of indole alkaloid biosynthesis in Catharanthus roseus, indicating that the NIC2/ORCA3 ERF subfamily was recruited independently to regulate jasmonate-inducible secondary metabolism in distinct plant lineages.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system.

Katsuyuki T. Yamato; Kimitsune Ishizaki; Masaki Fujisawa; Sachiko Okada; Shigeki Nakayama; Mariko Fujishita; Hiroki Bando; Kohei Yodoya; Kiwako Hayashi; Tomoyuki Bando; Akiko Hasumi; Tomohisa Nishio; Ryoko Sakata; Masayuki Yamamoto; Arata Yamaki; Masataka Kajikawa; Takashi Yamano; Taku Nishide; Seung-Hyuk Choi; Yuu Shimizu-Ueda; Tsutomu Hanajiri; Megumi Sakaida; Kaoru Kono; Mizuki Takenaka; Shohei Yamaoka; Chiaki Kuriyama; Yoshito Kohzu; Hiroyuki Nishida; Axel Brennicke; Tadasu Shin-I

Y chromosomes are different from other chromosomes because of a lack of recombination. Until now, complete sequence information of Y chromosomes has been available only for some primates, although considerable information is available for other organisms, e.g., several species of Drosophila. Here, we report the gene organization of the Y chromosome in the dioecious liverwort Marchantia polymorpha and provide a detailed view of a Y chromosome in a haploid organism. On the 10-Mb Y chromosome, 64 genes are identified, 14 of which are detected only in the male genome and are expressed in reproductive organs but not in vegetative thalli, suggesting their participation in male reproductive functions. Another 40 genes on the Y chromosome are expressed in thalli and male sexual organs. At least six of these genes have diverged X-linked counterparts that are in turn expressed in thalli and sexual organs in female plants, suggesting that these X- and Y-linked genes have essential cellular functions. These findings indicate that the Y and X chromosomes share the same ancestral autosome and support the prediction that in a haploid organism essential genes on sex chromosomes are more likely to persist than in a diploid organism.


Plant Molecular Biology | 2004

Isolation and characterization of Δ6-desaturase, an ELO-like enzyme and Δ5-desaturase from the liverwort Marchantia polymorpha and production of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichia pastoris

Masataka Kajikawa; Katsuyuki T. Yamato; Yoshito Kohzu; Masutoshi Nojiri; Eiji Sakuradani; Sakayu Shimizu; Yasuyoshi Sakai; Hideya Fukuzawa; Kanji Ohyama

The liverwort Marchantiapolymorpha contains high proportions of arachidonic and eicosapentaenoic acids. In general, these C20 polyunsaturated fatty acids (PUFA) are synthesized from linoleic and α-linolenic acids, respectively, by a series of reactions catalyzed by Δ6-desaturase, an ELO-like enzyme involved in Δ6 elongation and Δ5-desaturase. Here we report the isolation and characterization of the cDNAs, MpDES6, MpELO1 and MpDES5, coding for the respective enzymes from M.polymorpha. Co-expression of the MpDES6, MpELO1 and MpDES5 cDNAs resulted in the accumulation of arachidonic and eicosapentaenoic acids in the methylotrophic yeast Pichiapastoris. Interestingly, Δ6 desaturation by the expression of the MpDES6 cDNA appears to occur both in glycerolipids and the acyl-CoA pool, although other lower-plant Δ6-desaturases are known to have a strong preference for glycerolipids.


Plant Molecular Biology | 2009

A PIP-family protein is required for biosynthesis of tobacco alkaloids.

Masataka Kajikawa; Nobuhiro Hirai; Takashi Hashimoto

Plants in the Nicotiana genus produce nicotine and related pyridine alkaloids as a part of their chemical defense against insect herbivores. These alkaloids are formed by condensation of a derivative of nicotinic acid, but the enzyme(s) involved in the final condensation step remains elusive. In Nicotiana tabacum, an orphan reductase A622 and its close homolog A622L are coordinately expressed in the root, upregulated by methyl jasmonate treatment, and controlled by the NIC regulatory loci specific to the biosynthesis of tobacco alkaloids. Conditional suppression of A622 and A622L by RNA interference inhibited cell growth, severely decreased the formation of all tobacco alkaloids, and concomitantly induced an accumulation of nicotinic acid β-N-glucoside, a probable detoxification metabolite of nicotinic acid, in both hairy roots and methyl jasmonate-elicited cultured cells of tobacco. N-methylpyrrolinium cation, a precursor of the pyrrolidine moiety of nicotine, also accumulated in the A622(L)-knockdown hairy roots. We propose that the tobacco A622-like reductases of the PIP family are involved in either the formation of a nicotinic acid-derived precursor or the final condensation reaction of tobacco alkaloids.


Plant Physiology | 2011

Vacuole-Localized Berberine Bridge Enzyme-Like Proteins Are Required for a Late Step of Nicotine Biosynthesis in Tobacco

Masataka Kajikawa; Tsubasa Shoji; Akira Kato; Takashi Hashimoto

Tobacco (Nicotiana tabacum) plants synthesize nicotine and related pyridine-type alkaloids, such as anatabine, in their roots and accumulate them in their aerial parts as chemical defenses against herbivores. Herbivory-induced jasmonate signaling activates structural genes for nicotine biosynthesis and transport by way of the NICOTINE (NIC) regulatory loci. The biosynthesis of tobacco alkaloids involves the condensation of an unidentified nicotinic acid-derived metabolite with the N-methylpyrrolinium cation or with itself, but the exact enzymatic reactions and enzymes involved remain unclear. Here, we report that jasmonate-inducible tobacco genes encoding flavin-containing oxidases of the berberine bridge enzyme family (BBLs) are expressed in the roots and regulated by the NIC loci. When expression of the BBL genes was suppressed in tobacco hairy roots or in tobacco plants, nicotine production was highly reduced, with a gradual accumulation of a novel nicotine metabolite, dihydromethanicotine. In the jasmonate-elicited cultured tobacco cells, suppression of BBL expression efficiently inhibited the formation of anatabine and other pyridine alkaloids. Subcellular fractionation and localization of green fluorescent protein-tagged BBLs showed that BBLs are localized in the vacuoles. These results indicate that BBLs are involved in a late oxidation step subsequent to the pyridine ring condensation reaction in the biosynthesis of tobacco alkaloids.


Planta | 2009

Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L.

Hidenobu Uchida; Hirofumi Yamashita; Masataka Kajikawa; Kiyoshi Ohyama; Osamu Nakayachi; Ryuji Sugiyama; Katsuyuki T. Yamato; Toshiya Muranaka; Hideya Fukuzawa; Miho Takemura; Kanji Ohyama

Euphorbia tirucalli L., which is also known as a petroleum plant, produces a large amount of phytosterols and triterpenes. During their biosynthesis, squalene synthase converts two molecules of the hydrophilic substrate farnesyl diphosphate into a hydrophobic product, squalene. An E. tirucalli cDNA clone of a putative squalene synthase gene (EtSS) was isolated by RT-PCR followed by 5′- and 3′-RACE. The restriction fragment polymorphisms revealed by Southern blot analysis suggest that EtSS is a single copy gene. The glycine at the 287th residue from the N-terminal end of domain C has replaced alanine, which is conserved among all the other SS sequences deposited in the Genbank database. The N-terminal 380 residues of the hydrophilic sequence was expressed as a peptide-tagged protein in E. coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. GC-MS analysis showed that squalene was detected in the in vitro reaction mixture. E. tirucalli transgenic callus lines, in which EtSS was overexpressed, accumulated increased amounts of phytosterols as compared with that of wild type callus. RT-PCR analysis of wild type E. tirucalli plants revealed that the EtSS transcript accumulated in almost equal amounts in the stems and the leaves with a stalk, while a lower amount was detected in the roots. In situ hybridization analysis revealed that prominent antisense-probe signal was detected in the cambia within bundle sheathes. These results indicate that EtSS functions prominently in cambia, which are located adjacent to conductive tubes, and that this gene plays important roles in phytosterol accumulation in petroleum plants.


Bioscience, Biotechnology, and Biochemistry | 2008

Production of Arachidonic and Eicosapentaenoic Acids in Plants Using Bryophyte Fatty Acid Δ6-Desaturase, Δ6-Elongase, and Δ5-Desaturase Genes

Masataka Kajikawa; Keisuke Matsui; Misa Ochiai; Yoshikazu Tanaka; Yoichi Kita; Masao Ishimoto; Yoshito Kohzu; Shin-ichiro Shoji; Katsuyuki T. Yamato; Kanji Ohyama; Hideya Fukuzawa; Takayuki Kohchi

The liverwort Marchantia polymorpha L. synthesizes arachidonic (ARA) and eicosapentaenoic acids (EPA) from linoleic and α-linolenic acids respectively by a series of reactions catalyzed by Δ6-desaturase, Δ6-elongase, and Δ5-desaturase. Overexpression of the M. polymorpha genes encoding these enzymes in transgenic M. polymorpha plants resulted in 3- and 2-fold accumulation of ARA and EPA respectively, as compared to those in the wild type. When these three genes were introduced and co-expressed in tobacco plants, in which long-chain polyunsaturated fatty acids (LCPUFAs) are not native cellular components, ARA and EPA represented up to 15.5% and 4.9% respectively of the total fatty acid in the leaves. Similarly in soybean, C20-LCPUFAs represented up to 19.5% of the total fatty acids in the seeds. These results suggest that M. polymorpha can provide genes crucial to the production of C20-LCPUFAs in transgenic plants.


FEBS Letters | 2006

Isolation and functional characterization of fatty acid Δ5‐elongase gene from the liverwort Marchantia polymorpha L

Masataka Kajikawa; Katsuyuki T. Yamato; Yasuyoshi Sakai; Hideya Fukuzawa; Kanji Ohyama; Takayuki Kohchi

Bryophyte Marchantia polymorpha L. produces C22 very‐long‐chain polyunsaturated fatty acid (VLCPUFA). Thus far, no enzyme that mediates elongation of C20 VLCPUFAs has been identified in land plants. Here, we report the isolation and characterization of the gene MpELO2, which encodes an ELO‐like fatty acid elongase in M. polymorpha. Heterologous expression in yeast demonstrated that MpELO2 encodes Δ5‐elongase, which mediates elongation of arachidonic (20:4) and eicosapentaenoic acids (20:5). Phylogenetic and gene structural analysis indicated that the MpELO2 gene is closely related to bryophyte Δ6‐elongase genes for C18 fatty acid elongation and diverged from them by local gene duplication.


Journal of Plant Research | 2014

Difference in cesium accumulation among rice cultivars grown in the paddy field in Fukushima Prefecture in 2011 and 2012

Yoshihiro Ohmori; Yayoi Inui; Masataka Kajikawa; Atsumi Nakata; Naoyuki Sotta; Koji Kasai; Shimpei Uraguchi; Nobuhiro Tanaka; Sho Nishida; Takahiro Hasegawa; Takuya Sakamoto; Yuko Kawara; Kayoko Aizawa; Haruka Fujita; Ke Li; Naoya Sawaki; Koshiro Oda; Ryuichiro Futagoishi; Takahiro Tsusaka; Satomi Takahashi; Junpei Takano; Shinji Wakuta; Akira Yoshinari; Masataka Uehara; Shigeki Takada; Hayato Nagano; Kyoko Miwa; Izumi Aibara; Takuya Ojima; Kaoru Ebana

After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City. Our study demonstrated a substantial variation in Cs accumulation levels among the cultivars of rice.


Plant and Cell Physiology | 2013

Roles of Pollen-Specific Boron Efflux Transporter, OsBOR4, in the Rice Fertilization Process

Nobuhiro Tanaka; Shimpei Uraguchi; Akihiro Saito; Masataka Kajikawa; Koji Kasai; Yutaka Sato; Yoshiaki Nagamura; Toru Fujiwara

Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-green fluorescent protein (GFP) fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared with the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter, is required for normal pollen germination and/or tube elongation.

Collaboration


Dive into the Masataka Kajikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiho Yokota

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Takashi Hashimoto

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge