Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shimpei Uraguchi is active.

Publication


Featured researches published by Shimpei Uraguchi.


Journal of Experimental Botany | 2009

Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice

Shimpei Uraguchi; Shinsuke Mori; Masato Kuramata; Akira Kawasaki; Tomohito Arao; Satoru Ishikawa

Physiological properties involved in divergent cadmium (Cd) accumulation among rice genotypes were characterized using the indica cultivar ‘Habataki’ (high Cd in grains) and the japonica cultivar ‘Sasanishiki’ (low Cd in grains). Time-dependence and concentration-dependence of symplastic Cd absorption in roots were revealed not to be responsible for the different Cd accumulation between the two cultivars because root Cd uptake was not greater in the Cd-accumulating cultivar ‘Habataki’ compared with ‘Sasanishiki’. On the other hand, rapid and greater root-to-shoot Cd translocation was observed in ‘Habataki’, which could be mediated by higher abilities in xylem loading of Cd and transpiration rate as a driving force. To verify whether different abilities in xylem-mediated shoot-to-root translocation generally account for the genotypic variation in shoot Cd accumulation in rice, the world rice core collection, consisting of 69 accessions which covers the genetic diversity of almost 32 000 accessions of cultivated rice, was used. The results showed strong correlation between Cd levels in xylem sap and shoots and grains among the 69 rice accessions. Overall, the results presented in this study revealed that the root-to-shoot Cd translocation via the xylem is the major and common physiological process determining the Cd accumulation level in shoots and grains of rice plants.


Rice | 2012

Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation

Shimpei Uraguchi; T. Fujiwara

Cadmium (Cd) is a toxic heavy metal which harms human health. In Japan, a major source of human Cd-intake is rice grains and contamination of paddy soils by Cd and accumulation of Cd in rice grains are the serious agricultural issues. There also exist Cd contamination of rice and its toxicity in several populations in countries including China and Thailand. Understanding the Cd transport mechanisms in rice can be a basis for regulating rice Cd transport and accumulation by molecular engineering and marker-assisted breeding. Recently, a number of studies have revealed the behavior of Cd in rice, genetic diversity of Cd accumulation, quantitative trait loci controlling Cd accumulation and transporter molecules regulating Cd accumulation and distribution in rice. In this article, we summarize recent advances in the field and discuss perspectives to reduce grain Cd contents.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains

Shimpei Uraguchi; Takehiro Kamiya; Takuya Sakamoto; Koji Kasai; Yutaka Sato; Yoshiaki Nagamura; Akiko Yoshida; Junko Kyozuka; Satoru Ishikawa; Toru Fujiwara

Accumulation of cadmium (Cd) in rice (Oryza sativa L.) grains poses a potential health problem, especially in Asia. Most Cd in rice grains accumulates through phloem transport, but the molecular mechanism of this transport has not been revealed. In this study, we identified a rice Cd transporter, OsLCT1, involved in Cd transport to the grains. OsLCT1-GFP was localized at the plasma membrane in plant cells, and OsLCT1 showed Cd efflux activity in yeast. In rice plants, strong OsLCT1 expression was observed in leaf blades and nodes during the reproductive stage. In the uppermost node, OsLCT1 transcripts were detected around large vascular bundles and in diffuse vascular bundles. RNAi-mediated knockdown of OsLCT1 did not affect xylem-mediated Cd transport but reduced phloem-mediated Cd transport. The knockdown plants of OsLCT1 accumulated approximately half as much Cd in the grains as did the control plants. The content of other metals in rice grains and plant growth were not negatively affected by OsLCT1 suppression. These results suggest that OsLCT1 functions at the nodes in Cd transport into grains and that in a standard japonica cultivar, the regulation of OsLCT1 enables the generation of “low-Cd rice” without negative effects on agronomical traits. These findings identify a transporter gene for phloem Cd transport in plants.


The Plant Cell | 2011

Condensin II Alleviates DNA Damage and Is Essential for Tolerance of Boron Overload Stress in Arabidopsis

Takuya Sakamoto; Yayoi Inui; Shimpei Uraguchi; Takeshi Yoshizumi; Sachihiro Matsunaga; Minami Mastui; Masaaki Umeda; Kiichi Fukui; Toru Fujiwara

This work presents insight into how boron (B) toxicity develops at the molecular level in plants and suggests a role of condenisn II genes in tolerance to B toxicity. Experiments show that excess B induces DNA damage, and condensin II is involved in the amelioration of this damage. Although excess boron (B) is known to negatively affect plant growth, its molecular mechanism of toxicity is unknown. We previously isolated two Arabidopsis thaliana mutants, hypersensitive to excess B (heb1-1 and heb2-1). In this study, we found that HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits, respectively, of the condensin II protein complex, which functions in the maintenance of chromosome structure. Growth of Arabidopsis seedlings in medium containing excess B induced expression of condensin II subunit genes. Simultaneous treatment with zeocin, which induces DNA double-strand breaks (DSBs), and aphidicolin, which blocks DNA replication, mimicked the effect of excess B on root growth in the heb mutants. Both excess B and the heb mutations upregulated DSBs and DSB-inducible gene transcription, suggesting that DSBs are a cause of B toxicity and that condensin II reduces the incidence of DSBs. The Arabidopsis T-DNA insertion mutant atr-2, which is sensitive to replication-blocking reagents, was also sensitive to excess B. Taken together, these data suggest that the B toxicity mechanism in plants involves DSBs and possibly replication blocks and that plant condensin II plays a role in DNA damage repair or in protecting the genome from certain genotoxic stressors, particularly excess B.


Biometals | 2013

Nicotianamine is a major player in plant Zn homeostasis

Stephan Clemens; Ulrich Deinlein; Hassan Ahmadi; Stephan Höreth; Shimpei Uraguchi

Nicotianamine (NA) is among the most studied plant metal chelators. A large body of evidence supports its crucial role for Fe distribution in plants and as a precursor of phytosiderophore synthesis in grasses. NA forms stable complexes in vitro not only with Fe(II) and Fe(III) but also with various other divalent metal cations including Zn(II). Early observations indicated a possible contribution of NA to Zn trafficking in plants. Numerous studies on transgenic monocot and dicot plants with modulated NA levels have since then reported Zn accumulation phenotypes. NAS genes were shown to represent promising targets for biofortification efforts. For instance, NA was found to bind Zn in rice grains in a form bioavailable for humans. Recently, additional strong support for the existence of Zn–NA complexes in planta has been obtained in rice, Arabidopsis thaliana and the Zn hyperaccumulating plant A. halleri. We review the evidence for a role of NA in the intercellular and long-distance transport of Zn in plants and discuss open questions.


Planta | 2009

Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat (Avena strigosa Schreb.)

Shimpei Uraguchi; Masako Kiyono; Takuya Sakamoto; Izumi Watanabe; Katsuji Kuno

The contributions of cadmium (Cd) accumulation in cell walls, antioxidative enzymes and induction of phytochelatins (PCs) to Cd tolerance were investigated in two distinctive genotypes of black oat (Avena strigosa Schreb.). One cultivar of black oat ‘New oat’ accumulated Cd in the leaves at the highest concentration compared to another black oat cultivar ‘Soil saver’ and other major graminaceous crops. The shoot:root Cd ratio also demonstrated that ‘New oat’ was the high Cd-accumulating cultivar, whereas ‘Soil saver’ was the low Cd-accumulating cultivar. Varied levels of Cd exposure demonstrated the strong Cd tolerance of ‘New oat’. By contrast, low Cd-accumulating cultivar ‘Soil saver’ suffered Cd toxicity such as growth defects and increased lipid peroxidation, even though it accumulated less Cd in shoots than ‘New oat’. Higher activities of ascorbate peroxidase (EC 1.11.1.11) and superoxide dismutase (EC 1. 15. 1. 1) were observed in the leaves of ‘New oat’ than in ‘Soil saver’. No advantage of ‘New oat’ in PCs induction was observed in comparison to Cd-sensitive cultivar ‘Soil saver’, although Cd exposure increased the concentration of total PCs in both cultivars. Higher and increased Cd accumulation in cell wall fraction was observed in shoots of ‘New oat’. On the other hand, in ‘Soil saver’, apoplasmic Cd accumulation showed saturation under higher Cd exposure. Overall, the present results suggest that cell wall Cd accumulation and antioxidative activities function in the tolerance against Cd stress possibly in combination with vacuolar Cd compartmentation.


Journal of Experimental Botany | 2014

Arabidopsis thaliana phytochelatin synthase 2 is constitutively active in vivo and can rescue the growth defect of the PCS1-deficient cad1-3 mutant on Cd-contaminated soil.

Tanja Kühnlenz; Holger Schmidt; Shimpei Uraguchi; Stephan Clemens

Summary Experiments on Cd-contaminated soil demonstrated a contribution of phytochelatin synthesis to agriculturally relevant Cd accumulation and revealed constitutive activity of the hitherto functionally not understood Arabidopsis thaliana phytochelatin synthase2.


Soil Science and Plant Nutrition | 2013

Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice

Takehiro Kamiya; Md. Rafiqul Islam; Guilan Duan; Shimpei Uraguchi; Toru Fujiwara

Abstract Arsenate [As(V)] is toxic to organisms, and phosphate (Pi) transporter can mediate As(V) uptake due to their similarity in chemical structure. In the rice (Oriza sativa L.) genome, 13 Pi transporter genes (OsPTs) are present. Their response to As(V) and contribution to As(V) accumulation are unknown. We determined absolute mRNA amount of OsPTs in rice seedlings and OsPT1, OsPT2, OsPT4, and OsPT8 were quantified by real-time polymerase chain reaction (PCR). OsPT2, OsPT4, and OsPT8 were highly induced by Pi deficiency, while OsPT1 was not. In accordance with Pi deficiency response, OsPT2, OsPT4, and OsPT8 induction by Pi deficiency were severely suppressed by As(V). Those data suggest that As(V) affects Pi deficiency signaling in rice. To examine the As(V) transport activity of OsPT1 in planta, we obtained T-DNA mutant of OsPT1 (ospt1). The transcript expression level of OsPT1 in ospt1 was reduced by 70% in shoots and 50% in roots compared to those in the wild-type (WT), and arsenic (As) concentrations in shoots were reduced by 60% compared to WT. We further overexpressed OsPT1-GFP in rice. Overexpression lines showed higher As accumulation in shoots compared to wild-type. OsPT1-GFP is localized to plasma membrane. These results indicate that OsPT1 is involved in As(V) uptake from soil or apoplast.


Journal of Plant Research | 2014

Difference in cesium accumulation among rice cultivars grown in the paddy field in Fukushima Prefecture in 2011 and 2012

Yoshihiro Ohmori; Yayoi Inui; Masataka Kajikawa; Atsumi Nakata; Naoyuki Sotta; Koji Kasai; Shimpei Uraguchi; Nobuhiro Tanaka; Sho Nishida; Takahiro Hasegawa; Takuya Sakamoto; Yuko Kawara; Kayoko Aizawa; Haruka Fujita; Ke Li; Naoya Sawaki; Koshiro Oda; Ryuichiro Futagoishi; Takahiro Tsusaka; Satomi Takahashi; Junpei Takano; Shinji Wakuta; Akira Yoshinari; Masataka Uehara; Shigeki Takada; Hayato Nagano; Kyoko Miwa; Izumi Aibara; Takuya Ojima; Kaoru Ebana

After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City. Our study demonstrated a substantial variation in Cs accumulation levels among the cultivars of rice.


Plant and Cell Physiology | 2013

Roles of Pollen-Specific Boron Efflux Transporter, OsBOR4, in the Rice Fertilization Process

Nobuhiro Tanaka; Shimpei Uraguchi; Akihiro Saito; Masataka Kajikawa; Koji Kasai; Yutaka Sato; Yoshiaki Nagamura; Toru Fujiwara

Arabidopsis thaliana BOR1 was the first boron (B) transporter identified in living systems. There are four AtBOR1-like genes, OsBOR1, 2, 3 and 4, present in the rice genome. We characterized the activity, expression and physiological function of OsBOR4. OsBOR4 is an active efflux transporter of B. Quantitative PCR analysis and OsBOR4 promoter-green fluorescent protein (GFP) fusion revealed that OsBOR4 was both highly and specifically expressed in pollen. We obtained five Tos17 insertion mutants of osbor4. The pollen grains were viable and development of floral organs was normal in the homozygous osbor4 mutants. We observed that in all Tos17 insertion lines tested, the frequency of osbor4 homozygous plants was lower than expected in the progeny of self-fertilized heterozygous plants. These results establish that OsBOR4 is essential for normal reproductive processes. Pollen from osbor4 homozygous plants elongated fewer tubes on wild-type stigmas, and tube elongation of mutant pollen was less efficient compared with the wild-type pollen, suggesting reduced competence of osbor4 mutant pollen. The reduced competence of mutant pollen was further supported by the crosses of independent Tos17-inserted alleles of OsBOR4. Our results suggest that OsBOR4, a boron efflux transporter, is required for normal pollen germination and/or tube elongation.

Collaboration


Dive into the Shimpei Uraguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Izumi Watanabe

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Katsuji Kuno

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge