Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masato Kubo is active.

Publication


Featured researches published by Masato Kubo.


Nature Reviews Immunology | 2007

SOCS proteins, cytokine signalling and immune regulation

Akihiko Yoshimura; Tetsuji Naka; Masato Kubo

Suppressor of cytokine signalling (SOCS) proteins are inhibitors of cytokine signalling pathways. Studies have shown that SOCS proteins are key physiological regulators of both innate and adaptive immunity. These molecules positively and negatively regulate macrophage and dendritic-cell activation and are essential for T-cell development and differentiation. Evidence is also emerging of the involvement of SOCS proteins in diseases of the immune system. In this Review we bring together data from recent studies on SOCS proteins and their role in immunity, and propose a cohesive model of how cytokine signalling regulates immune-cell function.


Immunity | 2009

Foxp3-Dependent MicroRNA155 Confers Competitive Fitness to Regulatory T Cells by Targeting SOCS1 Protein

Li-Fan Lu; To-Ha Thai; Dinis Pedro Calado; Ashutosh Chaudhry; Masato Kubo; Kentaro Tanaka; Gabriel B. Loeb; Hana Lee; Akihiko Yoshimura; Klaus Rajewsky; Alexander Y. Rudensky

Foxp3(+) regulatory T (Treg) cells limit pathogenic immune responses to self-antigens and foreign antigens. An essential role for microRNA (miRNA) in the maintenance and function of Treg cells, revealed by the Treg cell-specific Dicer ablation, raised a question as to a specific miRNA contribution. We found that Foxp3 controlled the elevated miR155 expression required for maintaining Treg cell proliferative activity and numbers under nonlymphopenic conditions. Moreover, miR155 deficiency in Treg cells resulted in increased suppressor of cytokine signaling 1 (SOCS1) expression accompanied by impaired activation of signal transducer and activator of transcription 5 (STAT5) transcription factor in response to limiting amounts of interleukin-2. Our studies suggest that Foxp3-dependent regulation of miR155 maintains competitive fitness of Treg cell subsets by targeting SOCS1, and they provide experimental support for a proposed role for miRNAs in ensuring the robustness of cellular phenotypes.


Immunity | 2002

SOCS1/JAB Is a Negative Regulator of LPS-Induced Macrophage Activation

Ichiko Kinjyo; Toshikatsu Hanada; Kyoko Inagaki-Ohara; Hiroyuki Mori; Daisuke Aki; Masanobu Ohishi; Hiroki Yoshida; Masato Kubo; Akihiko Yoshimura

Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4. We show here that the suppressor of cytokine-signaling-1 (SOCS1/JAB) is rapidly induced by LPS and negatively regulates LPS signaling. SOCS1(+/-) mice or SOCS1(-/-) mice with interferon-gamma (IFNgamma)-deficient background were more sensitive to LPS-induced lethal effects than were wild-type littermates. LPS-induced NO(2)(-) synthesis and TNFalpha production were augmented in SOCS1(-/-) macrophages. Furthermore, LPS tolerance, a protection mechanism against endotoxin shock, was also strikingly reduced in SOCS1(-/-) cells. LPS-induced I-kappaB and p38 phosphorylation was upregulated in SOCS1(-/-) macrophages, and forced expression of SOCS1 suppressed LPS-induced NF-kappaB activation. Thus, SOCS1 directly suppresses TLR4 signaling and modulates innate immunity.


Nature Immunology | 2003

Suppressors of cytokine signaling and immunity

Masato Kubo; Toshikatsu Hanada; Akihiko Yoshimura

The suppressors of cytokine signaling (SOCS) and cytokine-inducible SH2 protein are key physiological regulators of the immune system. Principally, SOCS1 and SOCS3 regulate T cells as well as antigen-presenting cells, including macrophages and dendritic cells. Here we review the function of SOCS1 and SOCS3 in innate and adaptive immunity, with particular emphasis on the relationship between immune regulation and SOCS.


Nature Medicine | 2003

SOCS-3 regulates onset and maintenance of TH2-mediated allergic responses

Yoh Ichi Seki; Hiromasa Inoue; Naoko Nagata; Katsuhiko Hayashi; Satoru Fukuyama; Koichiro Matsumoto; Okiru Komine; Shinjiro Hamano; Kunisuke Himeno; Kyoko Inagaki-Ohara; Nicholas A. Cacalano; Anne O'Garra; Tadahilo Oshida; Hirohisa Saito; James A. Johnston; Akihiko Yoshimura; Masato Kubo

Members of the suppressor of cytokine signaling (SOCS) family are involved in the pathogenesis of many inflammatory diseases. SOCS-3 is predominantly expressed in T-helper type 2 (TH2) cells, but its role in TH2-related allergic diseases remains to be investigated. In this study we provide a strong correlation between SOCS-3 expression and the pathology of asthma and atopic dermatitis, as well as serum IgE levels in allergic human patients. SOCS-3 transgenic mice showed increased TH2 responses and multiple pathological features characteristic of asthma in an airway hypersensitivity model system. In contrast, dominant-negative mutant SOCS-3 transgenic mice, as well as mice with a heterozygous deletion of Socs3, had decreased TH2 development. These data indicate that SOCS-3 has an important role in regulating the onset and maintenance of TH2-mediated allergic immune disease, and suggest that SOCS-3 may be a new therapeutic target for the development of antiallergic drugs.


Nature | 2011

TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation

Mark C. Siracusa; Steven A. Saenz; David A. Hill; Brian S. Kim; Mark B. Headley; Travis A. Doering; E. John Wherry; Heidi K. Jessup; Lori Siegel; Taku Kambayashi; Emily Dudek; Masato Kubo; Antonella Cianferoni; Jonathan M. Spergel; Steven F. Ziegler; Michael R. Comeau; David Artis

CD4+ T-helper type 2 (TH2) cells, characterized by their expression of interleukin (IL)-4, IL-5, IL-9 and IL-13, are required for immunity to helminth parasites and promote the pathological inflammation associated with asthma and allergic diseases. Polymorphisms in the gene encoding the cytokine thymic stromal lymphopoietin (TSLP) are associated with the development of multiple allergic disorders in humans, indicating that TSLP is a critical regulator of TH2 cytokine-associated inflammatory diseases. In support of genetic analyses, exaggerated TSLP production is associated with asthma, atopic dermatitis and food allergies in patients, and studies in murine systems demonstrated that TSLP promotes TH2 cytokine-mediated immunity and inflammation. However, the mechanisms through which TSLP induces TH2 cytokine responses remain poorly defined. Here we demonstrate that TSLP promotes systemic basophilia, that disruption of TSLP–TSLPR interactions results in defective basophil responses, and that TSLPR-sufficient basophils can restore TH2-cell-dependent immunity in vivo. TSLP acted directly on bone-marrow-resident progenitors to promote basophil responses selectively. Critically, TSLP could elicit basophil responses in both IL-3–IL-3R-sufficient and -deficient environments, and genome-wide transcriptional profiling and functional analyses identified heterogeneity between TSLP-elicited versus IL-3-elicited basophils. Furthermore, activated human basophils expressed TSLPR, and basophils isolated from eosinophilic oesophagitis patients were distinct from classical basophils. Collectively, these studies identify previously unrecognized heterogeneity within the basophil cell lineage and indicate that expression of TSLP may influence susceptibility to multiple allergic diseases by regulating basophil haematopoiesis and eliciting a population of functionally distinct basophils that promote TH2 cytokine-mediated inflammation.


Immunity | 2004

Regulation of αβ/γδ T Cell Lineage Commitment and Peripheral T Cell Responses by Notch/RBP-J Signaling

Kenji Tanigaki; Masayuki Tsuji; Norio Yamamoto; Hua Han; Jun Tsukada; Hiromasa Inoue; Masato Kubo; Tasuku Honjo

Abstract RBP-J is a key mediator of Notch signaling that regulates a large spectrum of cell fate determinations. To elucidate the functions of Notch signaling in T cell development, we inactivated RBP-J specifically at two stages of T cell development by crossing RBP-J floxed mice with lck-cre or CD4-cre transgenic mice. The loss of RBP-J at an earlier developmental stage resulted in enhanced generation and accelerated emigration of γδ T cells, whereas αβ T cell development was arrested at the double-negative 3 stage. The loss of RBP-J at a later stage did not affect the absolute number or the production rate of CD4 or CD8-positive mature T cells but enhanced Th1 cell response and reduced CD4 + T cell proliferation. Our data demonstrated that Notch/RBP-J signaling regulates γδ T cell generation and migration, αβ T cell maturation, terminal differentiation of CD4 + T cells into Th1/Th2 cells, and activation of T cells.


Nature Medicine | 2012

Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation

David A. Hill; Mark C. Siracusa; Michael C. Abt; Brian S. Kim; Dmytro Kobuley; Masato Kubo; Taku Kambayashi; David F. LaRosa; Ellen D. Renner; Jordan S. Orange; Frederic D. Bushman; David Artis

Commensal bacteria that colonize mammalian barrier surfaces are reported to influence T helper type 2 (TH2) cytokine-dependent inflammation and susceptibility to allergic disease, although the mechanisms that underlie these observations are poorly understood. In this report, we find that deliberate alteration of commensal bacterial populations via oral antibiotic treatment resulted in elevated serum IgE concentrations, increased steady-state circulating basophil populations and exaggerated basophil-mediated TH2 cell responses and allergic inflammation. Elevated serum IgE levels correlated with increased circulating basophil populations in mice and subjects with hyperimmunoglobulinemia E syndrome. Furthermore, B cell–intrinsic expression of myeloid differentiation factor 88 (MyD88) was required to limit serum IgE concentrations and circulating basophil populations in mice. Commensal-derived signals were found to influence basophil development by limiting proliferation of bone marrow–resident precursor populations. Collectively, these results identify a previously unrecognized pathway through which commensal-derived signals influence basophil hematopoiesis and susceptibility to TH2 cytokine–dependent inflammation and allergic disease.


Genome Biology | 2010

NetPath: a public resource of curated signal transduction pathways.

Kumaran Kandasamy; S. Sujatha Mohan; Rajesh Raju; Shivakumar Keerthikumar; Ghantasala S. Sameer Kumar; Abhilash Venugopal; Deepthi Telikicherla; Daniel J. Navarro; Suresh Mathivanan; Christian Pecquet; Sashi Kanth Gollapudi; Sudhir Gopal Tattikota; Shyam Mohan; Hariprasad Padhukasahasram; Yashwanth Subbannayya; Renu Goel; Harrys K.C. Jacob; Jun Zhong; Raja Sekhar; Vishalakshi Nanjappa; Lavanya Balakrishnan; Roopashree Subbaiah; Yl Ramachandra; B. Abdul Rahiman; T. S. Keshava Prasad; Jian Xin Lin; Jon C. D. Houtman; Stephen Desiderio; Jean-Christophe Renauld; Stefan N. Constantinescu

We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches.


Molecular and Cellular Biology | 1999

Suppression of STAT5 Functions in Liver, Mammary Glands, and T Cells in Cytokine-Inducible SH2-Containing Protein 1 Transgenic Mice

Akira Matsumoto; Youichi Seki; Masato Kubo; Satoshi Ohtsuka; Asuka Suzuki; Itsuro Hayashi; Kohichiro Tsuji; Tatsutoshi Nakahata; Masaru Okabe; Shuichi Yamada; Akihiko Yoshimura

ABSTRACT Various cytokines utilize Janus kinase (JAK) and the STAT (signal transducers and activators of transcription) family of transcription factors to carry out their biological functions. Among STATs, two highly related proteins, STAT5a and STAT5b, are activated by various cytokines, including prolactin, growth hormone, erythropoietin, interleukin 2 (IL-2), and IL-3. We have cloned a STAT5-dependent immediate-early cytokine-responsive gene, CIS1 (encoding cytokine-inducible SH2-containing protein 1). In this study, we created CIS1 transgenic mice under the control of a β-actin promoter. The transgenic mice developed normally; however, their body weight was lower than that of the wild-type mice, suggesting a defect in growth hormone signaling. Female transgenic mice failed to lactate after parturition because of a failure in terminal differentiation of the mammary glands, suggesting a defect in prolactin signaling. The IL-2-dependent upregulation of the IL-2 receptor α chain and proliferation were partially suppressed in the T cells of transgenic mice. These phenotypes remarkably resembled those found in STAT5a and/or STAT5b knockout mice. Indeed, STAT5 tyrosine phosphorylation was suppressed in mammary glands and the liver. Furthermore, the IL-2-induced activation of STAT5 was markedly inhibited in T cells in transgenic mice, while leukemia inhibitory factor-induced STAT3 phosphorylation was not affected. We also found that the numbers of γδ T cells, as well as those of natural killer (NK) cells and NKT cells, were dramatically decreased and that Th1/Th2 differentiation was altered in transgenic mice. These data suggest that CIS1 functions as a specific negative regulator of STAT5 in vivo and plays an important regulatory role in the liver, mammary glands, and T cells.

Collaboration


Dive into the Masato Kubo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasutaka Motomura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge