Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masato T. Kanemaki is active.

Publication


Featured researches published by Masato T. Kanemaki.


Nature Cell Biology | 2006

GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks

Agnieszka Gambus; Richard C. Jones; Alberto Sanchez-Diaz; Masato T. Kanemaki; Frederick van Deursen; Ricky D. Edmondson; Karim Labib

The components of the replisome that preserve genomic stability by controlling the progression of eukaryotic DNA replication forks are poorly understood. Here, we show that the GINS (go ichi ni san) complex allows the MCM (minichromosome maintenance) helicase to interact with key regulatory proteins in large replisome progression complexes (RPCs) that are assembled during initiation and disassembled at the end of S phase. RPC components include the essential initiation and elongation factor, Cdc45, the checkpoint mediator Mrc1, the Tof1–Csm3 complex that allows replication forks to pause at protein–DNA barriers, the histone chaperone FACT (facilitates chromatin transcription) and Ctf4, which helps to establish sister chromatid cohesion. RPCs also interact with Mcm10 and topoisomerase I. During initiation, GINS is essential for a specific subset of RPC proteins to interact with MCM. GINS is also important for the normal progression of DNA replication forks, and we show that it is required after initiation to maintain the association between MCM and Cdc45 within RPCs.


Nature Methods | 2009

An auxin-based degron system for the rapid depletion of proteins in nonplant cells.

Kohei Nishimura; Tatsuo Fukagawa; Haruhiko Takisawa; Tatsuo Kakimoto; Masato T. Kanemaki

Plants have evolved a unique system in which the plant hormone auxin directly induces rapid degradation of the AUX/IAA family of transcription repressors by a specific form of the SCF E3 ubiquitin ligase. Other eukaryotes lack the auxin response but share the SCF degradation pathway, allowing us to transplant the auxin-inducible degron (AID) system into nonplant cells and use a small molecule to conditionally control protein stability. The AID system allowed rapid and reversible degradation of target proteins in response to auxin and enabled us to generate efficient conditional mutants of essential proteins in yeast as well as cell lines derived from chicken, mouse, hamster, monkey and human cells, thus offering a powerful tool to control protein expression and study protein function.


Nature | 2003

Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo

Masato T. Kanemaki; Alberto Sanchez-Diaz; Agnieszka Gambus; Karim Labib

Evolutionarily diverse eukaryotic cells share many conserved proteins of unknown function. Some are essential for cell viability, emphasising their importance for fundamental processes of cell biology but complicating their analysis. We have developed an approach to the large-scale characterization of such proteins, based on conditional and rapid degradation of the target protein in vivo, so that the immediate consequences of bulk protein depletion can be examined. Budding yeast strains have been constructed in which essential proteins of unknown function have been fused to a ‘heat-inducible-degron’ cassette that targets the protein for proteolysis at 37 °C (ref. 4). By screening the collection for defects in cell-cycle progression, here we identify three DNA replication factors that interact with each other and that have uncharacterized homologues in human cells. We have used the degron strains to show that these proteins are required for the establishment and normal progression of DNA replication forks. The degron collection could also be used to identify other, essential, proteins with roles in many other processes of eukaryotic cell biology.


The EMBO Journal | 2006

Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks

Masato T. Kanemaki; Karim Labib

The Cdc45 protein is crucial for the initiation of chromosome replication in eukaryotic cells, as it allows the activation of prereplication complexes (pre‐RCs) that contain the MCM helicase. This causes the unwinding of origins and the establishment of DNA replication forks. The incorporation of Cdc45 at nascent forks is a highly regulated and poorly understood process that requires, in budding yeast, the Sld3 protein and the GINS complex. Previous studies suggested that Sld3 is also important for the progression of DNA replication forks after the initiation step, as are Cdc45 and GINS. In contrast, we show here that Sld3 does not move with DNA replication forks and only associates with MCM in an unstable manner before initiation. After the establishment of DNA replication forks from early origins, Sld3 is no longer essential for the completion of chromosome replication. Unlike Sld3, GINS is not required for the initial recruitment of Cdc45 to origins and instead is necessary for stable engagement of Cdc45 with the nascent replisome. Like Cdc45, GINS then associates stably with MCM during S‐phase.


Molecular Cell | 2013

The Elg1 Replication Factor C-like Complex Functions in PCNA Unloading during DNA Replication

Takashi Kubota; Kohei Nishimura; Masato T. Kanemaki; Anne Dunlop Donaldson

The ring-shaped complex PCNA coordinates DNA replication, encircling DNA to act as a polymerase clamp and a sliding platform to recruit other replication proteins. PCNA is loaded onto DNA by replication factor C, but it has been unknown how PCNA is removed from DNA when Okazaki fragments are completed or the replication fork terminates. Here we show that the Elg1 replication factor C-like complex (Elg1-RLC) functions in PCNA unloading. Using an improved degron system we show that without Elg1, PCNA accumulates on Saccharomyces cerevisiae chromatin during replication. The accumulated PCNA can be removed from chromatin in vivo by switching on Elg1 expression. We find moreover that treating chromatin with purified Elg1-RLC causes PCNA unloading in vitro. Our results demonstrate that Elg1-RLC functions in unloading of both unmodified and SUMOylated PCNA during DNA replication, while the genome instability of an elg1Δ mutant suggests timely PCNA unloading is critical for chromosome maintenance.


Current Biology | 2012

Mcm10 Plays a Role in Functioning of the Eukaryotic Replicative DNA Helicase, Cdc45-Mcm-GINS

George Watase; Haruhiko Takisawa; Masato T. Kanemaki

Eukaryotic DNA replication is initiated at multiple origins of replication, where many replication proteins assemble under the control of the cell cycle [1]. A key process of replication initiation is to convert inactive Mcm2-7 to active Cdc45-Mcm-GINS (CMG) replicative helicase [2]. However, it is not known whether the CMG assembly would automatically activate its helicase activity and thus assemble the replisome. Mcm10 is an evolutionally conserved essential protein required for the initiation of replication [3, 4]. Although the roles of many proteins involved in the initiation are understood, the role of Mcm10 remains controversial [5-9]. To characterize Mcm10 in more detail, we constructed budding yeast cells bearing a degron-fused Mcm10 protein that can be efficiently degraded in response to auxin. In the absence of Mcm10, a stable CMG complex was assembled at origins. However, subsequent translocation of CMG, replication protein A loading to origins, and the intra-S checkpoint activation were severely diminished, suggesting that origin unwinding is defective. We also found that Mcm10 associates with origins during initiation in an S-cyclin-dependent kinase- and Cdc45-dependent manner. Thus, Mcm10 plays an essential role in functioning of the CMG replicative helicase independent of assembly of a stable CMG complex at origins.


Molecular Cell | 2012

Mcm8 and Mcm9 Form a Complex that Functions in Homologous Recombination Repair Induced by DNA Interstrand Crosslinks

Kohei Nishimura; Masamichi Ishiai; Kazuki Horikawa; Tatsuo Fukagawa; Minoru Takata; Haruhiko Takisawa; Masato T. Kanemaki

DNA interstrand crosslinks (ICLs) are highly toxic lesions that stall the replication fork to initiate the repair process during the S phase of vertebrates. Proteins involved in Fanconi anemia (FA), nucleotide excision repair (NER), and translesion synthesis (TS) collaboratively lead to homologous recombination (HR) repair. However, it is not understood how ICL-induced HR repair is carried out and completed. Here, we showed that the replicative helicase-related Mcm family of proteins, Mcm8 and Mcm9, forms a complex required for HR repair induced by ICLs. Chicken DT40 cells lacking MCM8 or MCM9 are viable but highly sensitive to ICL-inducing agents, and exhibit more chromosome aberrations in the presence of mitomycin C compared with wild-type cells. During ICL repair, Mcm8 and Mcm9 form nuclear foci that partly colocalize with Rad51. Mcm8-9 works downstream of the FA and BRCA2/Rad51 pathways, and is required for HR that promotes sister chromatid exchanges, probably as a hexameric ATPase/helicase.


Cell Reports | 2016

Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors

Toyoaki Natsume; Tomomi Kiyomitsu; Yumiko Saga; Masato T. Kanemaki

Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID) technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES) cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.


Nature Communications | 2017

Exosomes maintain cellular homeostasis by excreting harmful DNA from cells.

Akiko Takahashi; Ryo Okada; Koji Nagao; Yuka Kawamata; Aki Hanyu; Shin Yoshimoto; Masaki Takasugi; Sugiko Watanabe; Masato T. Kanemaki; Chikashi Obuse; Eiji Hara

Emerging evidence is revealing that exosomes contribute to many aspects of physiology and disease through intercellular communication. However, the biological roles of exosome secretion in exosome-secreting cells have remained largely unexplored. Here we show that exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells. The inhibition of exosome secretion results in the accumulation of nuclear DNA in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery. This event provokes the innate immune response, leading to reactive oxygen species (ROS)-dependent DNA damage response and thus induce senescence-like cell-cycle arrest or apoptosis in normal human cells. These results, in conjunction with observations that exosomes contain various lengths of chromosomal DNA fragments, indicate that exosome secretion maintains cellular homeostasis by removing harmful cytoplasmic DNA from cells. Together, these findings enhance our understanding of exosome biology, and provide valuable new insights into the control of cellular homeostasis.


The EMBO Journal | 2011

Sld7, an Sld3‐associated protein required for efficient chromosomal DNA replication in budding yeast

Tamon Tanaka; Toshiko Umemori; Shizuko Endo; Sachiko Muramatsu; Masato T. Kanemaki; Yoichiro Kamimura; Chikashi Obuse; Hiroyuki Araki

Genetic screening of yeast for sld (synthetic lethality with dpb11) mutations has identified replication proteins, including Sld2, ‐3, and ‐5, and clarified the molecular mechanisms underlying eukaryotic chromosomal DNA replication. Here, we report a new replication protein, Sld7, identified by rescreening of sld mutations. Throughout the cell cycle, Sld7 forms a complex with Sld3, which associates with replication origins in a complex with Cdc45, binds to Dpb11 when phosphorylated by cyclin‐dependent kinase, and dissociates from origins once DNA replication starts. However, Sld7 does not move with the replication fork. Sld7 binds to the nonessential N‐terminal portion of Sld3 and reduces its affinity for Cdc45, a component of the replication fork. Although Sld7 is not essential for cell growth, its absence reduces the level of cellular Sld3, delays the dissociation from origins of GINS, a component of the replication fork, and slows S‐phase progression. These results suggest that Sld7 is required for the proper function of Sld3 at the initiation of DNA replication.

Collaboration


Dive into the Masato T. Kanemaki's collaboration.

Top Co-Authors

Avatar

Toyoaki Natsume

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Kohei Nishimura

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiromi Ogawa

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

James R. Paulson

University of Wisconsin–Oshkosh

View shared research outputs
Researchain Logo
Decentralizing Knowledge