Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomomi Kiyomitsu is active.

Publication


Featured researches published by Tomomi Kiyomitsu.


Nature Cell Biology | 2004

A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1

Chikashi Obuse; Osamu Iwasaki; Tomomi Kiyomitsu; Gohta Goshima; Yusuke Toyoda; Mitsuhiro Yanagida

Defects in kinetochore proteins often lead to aneuploidy and cancer. Mis12–Mtw1 is a conserved, essential kinetochore protein family. Here, we show that a Mis12 core complex exists in Schizosaccharomyces pombe and human cells. Nine polypeptides bind to human hMis12; two of these, HEC1 and Zwint-1, are authentic kinetochore proteins. Four other human proteins of unknown function (c20orf172, DC8, PMF1 and KIAA1570) correspond to yeast Mis12–Mtw1 complex components and are shown to be required for chromosome segregation in HeLa cells using RNA interference (RNAi). Surprisingly, hMis12 also forms a stable complex with the centromeric heterochromatin components HP1α and HP1γ. Double HP1 RNAi abolishes kinetochore localization of hMis12 and DC8. Therefore, centromeric HP1 may be the base to anchor the hMis12 core complex that is enriched with coiled coils and extends to outer Zwint-1 during mitosis.


Journal of Cell Biology | 2003

Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway

Gohta Goshima; Tomomi Kiyomitsu; Kinya Yoda; Mitsuhiro Yanagida

Kinetochores are the chromosomal sites for spindle interaction and play a vital role for chromosome segregation. The composition of kinetochore proteins and their cellular roles are, however, poorly understood in higher eukaryotes. We identified a novel kinetochore protein family conserved from yeast to human that is essential for equal chromosome segregation. The human homologue hMis12 of yeast spMis12/scMtw1 retains conserved sequence features and locates at the kinetochore region indistinguishable from CENP-A, a centromeric histone variant. RNA interference (RNAi) analysis of HeLa cells shows that the reduced hMis12 results in misaligned metaphase chromosomes, lagging anaphase chromosomes, and interphase micronuclei without mitotic delay, while CENP-A is located at kinetochores. Further, the metaphase spindle length is abnormally extended. Spindle checkpoint protein hMad2 temporally localizes at kinetochores at early mitotic stages after RNAi. The RNAi deficiency of CENP-A leads to a similar mitotic phenotype, but the kinetochore signals of other kinetochore proteins, hMis6 and CENP-C, are greatly diminished. RNAi for hMis6, like that of a kinetochore kinesin CENP-E, induces mitotic arrest. Kinetochore localization of hMis12 is unaffected by CENP-A RNAi, demonstrating an independent pathway of CENP-A in human kinetochores.


Nature Cell Biology | 2012

Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation

Tomomi Kiyomitsu; Iain M. Cheeseman

Mitotic spindle positioning by cortical pulling forces defines the cell division axis and location, which is critical for proper cell division and development. Although recent work has identified developmental and extrinsic cues that regulate spindle orientation, the contribution of intrinsic signals to spindle positioning and orientation remains unclear. Here, we demonstrate that cortical force generation in human cells is controlled by distinct spindle-pole- and chromosome-derived signals that regulate cytoplasmic dynein localization. First, dynein exhibits a dynamic asymmetric cortical localization that is negatively regulated by spindle-pole proximity, resulting in spindle oscillations to centre the spindle within the cell. We find that this signal comprises the spindle-pole-localized polo-like kinase (Plk1), which regulates dynein localization by controlling the interaction between dynein–dynactin and its upstream cortical targeting factors NuMA and LGN. Second, a chromosome-derived RanGTP gradient restricts the localization of NuMA–LGN to the lateral cell cortex to define and maintain the spindle orientation axis. RanGTP acts in part through the nuclear localization sequence of NuMA to locally alter the ability of NuMA–LGN to associate with the cell cortex in the vicinity of chromosomes. We propose that these chromosome- and spindle-pole-derived gradients generate an intrinsic code to control spindle position and orientation.


Cell | 2013

Cortical Dynein and Asymmetric Membrane Elongation Coordinately Position the Spindle in Anaphase

Tomomi Kiyomitsu; Iain M. Cheeseman

Mitotic spindle position defines the cell-cleavage site during cytokinesis. However, the mechanisms that control spindle positioning to generate equal-sized daughter cells remain poorly understood. Here, we demonstrate that two mechanisms act coordinately to center the spindle during anaphase in symmetrically dividing human cells. First, the spindle is positioned directly by the microtubule-based motor dynein, which we demonstrate is targeted to the cell cortex by two distinct pathways: a Gαi/LGN/NuMA-dependent pathway and a 4.1G/R and NuMA-dependent, anaphase-specific pathway. Second, we find that asymmetric plasma membrane elongation occurs in response to spindle mispositioning to alter the cellular boundaries relative to the spindle. Asymmetric membrane elongation is promoted by chromosome-derived Ran-GTP signals that locally reduce Anillin at the growing cell cortex. In asymmetrically elongating cells, dynein-dependent spindle anchoring at the stationary cell cortex ensures proper spindle positioning. Our results reveal the anaphase-specific spindle centering systems that achieve equal-sized cell division.


Journal of Cell Biology | 2010

Aurora B kinase controls the targeting of the Astrin–SKAP complex to bioriented kinetochores

Jens Christopher Schmidt; Tomomi Kiyomitsu; Tetsuya Hori; Chelsea B. Backer; Tatsuo Fukagawa; Iain M. Cheeseman

Localization of the spindle and kinetochore proteins Astrin, SKAP, and LC8 is antagonized by Aurora B so that they target exclusively to bioriented kinetochores.


Molecular and Cellular Biology | 2011

Protein Interaction Domain Mapping of Human Kinetochore Protein Blinkin Reveals a Consensus Motif for Binding of Spindle Assembly Checkpoint Proteins Bub1 and BubR1

Tomomi Kiyomitsu; Hiroaki Murakami; Mitsuhiro Yanagida

ABSTRACT The kinetochore is a supramolecular structure essential for microtubule attachment and the mitotic checkpoint. Human blinkin/human Spc105 (hSpc105)/hKNL1 was identified originally as a mixed-lineage leukemia (MLL) fusion partner and later as a kinetochore component. Blinkin directly binds to several structural and regulatory proteins, but the precise binding sites have not been defined. Here, we report distinct and essential binding domains for Bub1 and BubR1 (here designated Bubs) at the N terminus of blinkin and for Zwint-1 and hMis14/hNsl1 at the C terminus. The minimal binding sites for Bub1 and BubR1 are separate but contain a consensus KI motif, KI(D/N)XXXF(L/I)XXLK. RNA interference (RNAi)-mediated replacement with mutant blinkin reveals that the Bubs-binding domain is functionally important for chromosome alignment and segregation. We also provide evidence that hMis14 mediates hNdc80 binding to blinkin at the kinetochore. The C-terminal fragment of blinkin locates at kinetochores in a dominant-negative fashion by displacing endogenous blinkin from kinetochores. This negative dominance is relieved by mutations of the hMis14 binding PPSS motif on the C terminus of blinkin or by fusion of the N sequence that binds to Bub1 and BubR1. Taken together, these results indicate that blinkin functions to connect Bub1 and BubR1 with the hMis12, Ndc80, and Zwint-1 complexes, and disruption of this connection may lead to tumorigenesis.


Cell Reports | 2016

Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors

Toyoaki Natsume; Tomomi Kiyomitsu; Yumiko Saga; Masato T. Kanemaki

Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID) technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES) cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.


Journal of Cell Biology | 2010

Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes

Tomomi Kiyomitsu; Osamu Iwasaki; Chikashi Obuse; Mitsuhiro Yanagida

hMis14 and HP1 depend on each other to localize to the kinetochore and inner centromere, respectively.


Structure | 2009

The Crystal Structure of the N-Terminal Region of BUB1 Provides Insight into the Mechanism of BUB1 Recruitment to Kinetochores

Victor M. Bolanos-Garcia; Tomomi Kiyomitsu; Sheena D'Arcy; Dimitri Y. Chirgadze; J. Günter Grossmann; Dijana Matak-Vinkovic; Ashok R. Venkitaraman; Mitsuhiro Yanagida; Carol V. Robinson; Tom L. Blundell

Summary The interaction of the central mitotic checkpoint component BUB1 with the mitotic kinetochore protein Blinkin is required for the kinetochore localization and function of BUB1 in the mitotic spindle assembly checkpoint, the regulatory mechanism of the cell cycle that ensures the even distribution of chromosomes during the transition from metaphase to anaphase. Here, we report the 1.74 Å resolution crystal structure of the N-terminal region of BUB1. The structure is organized as a tandem arrangement of three divergent units of the tetratricopeptide motif. Functional assays in vivo of native and site-specific mutants identify the residues of human BUB1 important for the interaction with Blinkin and define one region of potential therapeutic interest. The structure provides insight into the molecular basis of Blinkin-specific recognition by BUB1 and, on a broader perspective, of the mechanism that mediates kinetochore localization of BUB1 in checkpoint-activated cells.


Trends in Cell Biology | 2015

Mechanisms of daughter cell-size control during cell division

Tomomi Kiyomitsu

Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size.

Collaboration


Dive into the Tomomi Kiyomitsu's collaboration.

Top Co-Authors

Avatar

Mitsuhiro Yanagida

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato T. Kanemaki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Toyoaki Natsume

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Iain M. Cheeseman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge