Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masato Yabuki is active.

Publication


Featured researches published by Masato Yabuki.


Journal of Medicinal Chemistry | 2013

Discovery of a Selective Kinase Inhibitor (TAK-632) Targeting Pan-RAF Inhibition: Design, Synthesis, and Biological Evaluation of C-7-Substituted 1,3-Benzothiazole Derivatives.

Masanori Okaniwa; Masaaki Hirose; Takeo Arita; Masato Yabuki; Akito Nakamura; Terufumi Takagi; Tomohiro Kawamoto; Noriko Uchiyama; Akihiko Sumita; Shunichirou Tsutsumi; Tsuneaki Tottori; Yoshitaka Inui; Bi-Ching Sang; Jason Yano; Kathleen Aertgeerts; Sei Yoshida; Tomoyasu Ishikawa

With the aim of discovering a selective kinase inhibitor targeting pan-RAF kinase inhibition, we designed novel 1,3-benzothiazole derivatives based on our thiazolo[5,4-b]pyridine class RAF/VEGFR2 inhibitor 1 and developed a regioselective cyclization methodology for the C-7-substituted 1,3-benzothiazole scaffold utilizing meta-substituted anilines. Eventually, we selected 7-cyano derivative 8B (TAK-632) as a development candidate and confirmed its binding mode by cocrystal structure with BRAF. Accommodation of the 7-cyano group into the BRAF-selectivity pocket and the 3-(trifluoromethyl)phenyl acetamide moiety into the hydrophobic back pocket of BRAF in the DFG-out conformation contributed to enhanced RAF potency and selectivity vs VEGFR2. Reflecting its potent pan-RAF inhibition and slow off-rate profile, 8B demonstrated significant cellular activity against mutated BRAF or mutated NRAS cancer cell lines. Furthermore, in both A375 (BRAF(V600E)) and HMVII (NRAS(Q61K)) xenograft models in rats, 8B demonstrated regressive antitumor efficacy by twice daily, 14-day repetitive administration without significant body weight loss.


Journal of Medicinal Chemistry | 2012

Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. 1. Exploration of [5,6]-fused bicyclic scaffolds

Masanori Okaniwa; Masaaki Hirose; Takashi Imada; Tomohiro Ohashi; Youko Hayashi; Tohru Miyazaki; Takeo Arita; Masato Yabuki; Kazuyo Kakoi; Juran Kato; Terufumi Takagi; Tomohiro Kawamoto; Shuhei Yao; Akihiko Sumita; Shunichirou Tsutsumi; Tsuneaki Tottori; Hideyuki Oki; Bi-Ching Sang; Jason Yano; Kathleen Aertgeerts; Sei Yoshida; Tomoyasu Ishikawa

To develop RAF/VEGFR2 inhibitors that bind to the inactive DFG-out conformation, we conducted structure-based drug design using the X-ray cocrystal structures of BRAF, starting from an imidazo[1,2-b]pyridazine derivative. We designed various [5,6]-fused bicyclic scaffolds (ring A, 1-6) possessing an anilide group that forms two hydrogen bond interactions with Cys532. Stabilizing the planarity of this anilide and the nitrogen atom on the six-membered ring of the scaffold was critical for enhancing BRAF inhibition. The selected [1,3]thiazolo[5,4-b]pyridine derivative 6d showed potent inhibitory activity in both BRAF and VEGFR2. Solid dispersion formulation of 6d (6d-SD) maximized its oral absorption in rats and showed significant suppression of ERK1/2 phosphorylation in an A375 melanoma xenograft model in rats by single administration. Tumor regression (T/C = -7.0%) in twice-daily repetitive studies at a dose of 50 mg/kg in rats confirmed that 6d is a promising RAF/VEGFR2 inhibitor showing potent anticancer activity.


Journal of Medicinal Chemistry | 2013

Design and Synthesis of Potent Inhibitor of Apoptosis (IAP) Proteins Antagonists Bearing an Octahydropyrrolo[1,2-a]pyrazine Scaffold as a Novel Proline Mimetic.

Kentaro Hashimoto; Bunnai Saito; Naoki Miyamoto; Yuya Oguro; Daisuke Tomita; Zenyu Shiokawa; Moriteru Asano; Hiroyuki Kakei; Naohiro Taya; Masanori Kawasaki; Hiroyuki Sumi; Masato Yabuki; Kenichi Iwai; Sei Yoshida; Mie Yoshimatsu; Kazunobu Aoyama; Yohei Kosugi; Takashi Kojima; Nao Morishita; Douglas R. Dougan; Gyorgy Snell; Shinichi Imamura; Tomoyasu Ishikawa

To develop novel inhibitor of apoptosis (IAP) proteins antagonists, we designed a bicyclic octahydropyrrolo[1,2-a]pyrazine scaffold as a novel proline bioisostere. This design was based on the X-ray co-crystal structure of four N-terminal amino acid residues (AVPI) of the second mitochondria-derived activator of caspase (Smac) with the X-chromosome-linked IAP (XIAP) protein. Lead optimization of this scaffold to improve oral absorption yielded compound 45, which showed potent cellular IAP1 (cIAP1 IC(50): 1.3 nM) and XIAP (IC(50): 200 nM) inhibitory activity, in addition to potent tumor growth inhibitory activity (GI(50): 1.8 nM) in MDA-MB-231 breast cancer cells. X-ray crystallographic analysis of compound 45 bound to XIAP and to cIAP1 was achieved, revealing the various key interactions that contribute to the higher cIAPI affinity of compound 45 over XIAP. Because of its potent IAP inhibitory activities, compound 45 (T-3256336) caused tumor regression in a MDA-MB-231 tumor xenograft model (T/C: -53% at 30 mg/kg).


Molecular Cancer Therapeutics | 2017

A novel LSD1 inhibitor T-3775440 disrupts GFI1B-containing complex leading to transdifferentiation and impaired growth of AML cells.

Yoshinori Ishikawa; Kanae Gamo; Masato Yabuki; Shinji Takagi; Kosei Toyoshima; Kazuhide Nakayama; Akiko Nakayama; Megumi Morimoto; Hitoshi Miyashita; Ryo Dairiki; Yukiko Hikichi; Naoki Tomita; Daisuke Tomita; Shinichi Imamura; Misa Iwatani; Yusuke Kamada; Satoru Matsumoto; Ryujiro Hara; Toshiyuki Nomura; Ken Tsuchida; Kazuhide Nakamura

Dysregulation of lysine (K)-specific demethylase 1A (LSD1), also known as KDM1A, has been implicated in the development of various cancers, including leukemia. Here, we describe the antileukemic activity and mechanism of action of T-3775440, a novel irreversible LSD1 inhibitor. Cell growth analysis of leukemia cell lines revealed that acute erythroid leukemia (AEL) and acute megakaryoblastic leukemia cells (AMKL) were highly sensitive to this compound. T-3775440 treatment enforced transdifferentiation of erythroid/megakaryocytic lineages into granulomonocytic-like lineage cells. Mechanistically, T-3775440 disrupted the interaction between LSD1 and growth factor–independent 1B (GFI1B), a transcription factor critical for the differentiation processes of erythroid and megakaryocytic lineage cells. Knockdown of LSD1 and GFI1B recapitulated T-3775440–induced transdifferentiation and cell growth suppression, highlighting the significance of LSD1–GFI1B axis inhibition with regard to the anti-AML effects of T-3775440. Moreover, T-3775440 exhibited significant antitumor efficacy in AEL and AMKL xenograft models. Our findings provide a rationale for evaluating LSD1 inhibitors as potential treatments and indicate a novel mechanism of action against AML, particularly AEL and AMKL. Mol Cancer Ther; 16(2); 273–84. ©2016 AACR.


Molecular Cancer Therapeutics | 2013

Antitumor Activity and Pharmacodynamic Biomarkers of a Novel and Orally Available Small-Molecule Antagonist of Inhibitor of Apoptosis Proteins

Hiroyuki Sumi; Masato Yabuki; Kenichi Iwai; Megumi Morimoto; Ryosuke Hibino; Masakazu Inazuka; Kentaro Hashimoto; Yohei Kosugi; Kazunobu Aoyama; Shunsuke Yamamoto; Mie Yoshimatsu; Hideki Yamasaki; Ryuichi Tozawa; Tomoyasu Ishikawa; Sei Yoshida

Inhibitor of apoptosis proteins (IAP), which are key regulators of apoptosis, are inhibited by second mitochondria-derived activator of caspase (SMAC). Small-molecule IAP antagonists have recently been reported as novel therapeutic treatments for cancer. In this study, we showed that the octahydro-pyrrolo[1,2-a]pyrazine derivative, T-3256336, is a novel and orally available small-molecule IAP antagonist. T-3256336 selectively binds to and antagonizes protein interactions involving cellular IAP-1 (cIAP-1), cIAP-2, and X-linked IAP (XIAP). T-3256336 induced the rapid proteasomal degradation of cIAP-1 and activated TNF-α–dependent extrinsic apoptosis signaling in cultured cells. In a MDA-MB-231-Luc breast cancer xenograft model, T-3256336 induced cIAP-1 degradation, TNF-α production, and caspase activation in tumors, which resulted in strong antitumor activities. T-3256336 induced increases in the plasma levels of TNF-α and fragmented cytokeratin-18, which correlated with the antitumor potency in MDA-MB-231-Luc xenograft models. This study provided further insights into biomarkers of IAP antagonists. Furthermore, our data provided evidence that T-3256336 is a promising new anticancer drug worthy of further evaluation and development. Mol Cancer Ther; 12(2); 230–40. ©2012 AACR.


Bioorganic & Medicinal Chemistry | 2013

Design, synthesis, and biological activities of novel hexahydropyrazino[1,2-a]indole derivatives as potent inhibitors of apoptosis (IAP) proteins antagonists with improved membrane permeability across MDR1 expressing cells.

Zenyu Shiokawa; Kentaro Hashimoto; Bunnai Saito; Yuya Oguro; Hiroyuki Sumi; Masato Yabuki; Mie Yoshimatsu; Yohei Kosugi; Yasuyuki Debori; Nao Morishita; Douglas R. Dougan; Gyorgy Snell; Sei Yoshida; Tomoyasu Ishikawa

We previously reported octahydropyrrolo[1,2-a]pyrazine derivative 2 (T-3256336) as a potent antagonist for inhibitors of apoptosis (IAP) proteins. Because compound 2 was susceptible to MDR1 mediated efflux, we developed another scaffold, hexahydropyrazino[1,2-a]indole, using structure-based drug design. The fused benzene ring of this scaffold was aimed at increasing the lipophilicity and decreasing the basicity of the scaffold to improve the membrane permeability across MDR1 expressing cells. We established a chiral pool synthetic route to yield the desired tricyclic chiral isomers. Chemical modification of the core scaffold led to a representative compound 50, which showed strong inhibition of IAP binding (X chromosome-linked IAP [XIAP]: IC50 23 nM and cellular IAP [cIAP]: IC50 1.1 nM) and cell growth inhibition (MDA-MB-231 cells: GI50 2.8 nM) with high permeability and low potential of MDR1 substrate.


Bioorganic & Medicinal Chemistry | 2012

Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors: 2. Synthesis and characterization of a novel imide-type prodrug for improving oral absorption.

Masanori Okaniwa; Takashi Imada; Tomohiro Ohashi; Tohru Miyazaki; Takeo Arita; Masato Yabuki; Akihiko Sumita; Shunichirou Tsutsumi; Keiko Higashikawa; Terufumi Takagi; Tomohiro Kawamoto; Yoshitaka Inui; Sei Yoshida; Tomoyasu Ishikawa

As an alternative to the previously reported solid dispersion formulation for enhancing the oral absorption of thiazolo[5,4-b]pyridine 1, we investigated novel N-acyl imide prodrugs of 1 as RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. Introducing N-acyl promoieties at the benzanilide position gave chemically stable imides. N-tert-Butoxycarbonyl (Boc) introduced imide 6 was a promising prodrug, which was converted to the active compound 1 after its oral administration in mice. Cocrystals of 6 with AcOH (6b) possessed good physicochemical properties with moderate thermodynamic solubility (19μg/mL). This crystalline prodrug 6b was rapidly and enzymatically converted into 1 after its oral absorption in mice, rats, dogs, and monkeys. Prodrug 6b showed in vivo antitumor regressive efficacy (T/C=-6.4%) in an A375 melanoma xenograft model in rats. Hence, we selected 6b as a promising candidate and are performing further studies. Herein, we report the design, synthesis, and characterization of novel imide-type prodrugs.


PLOS ONE | 2017

Discovery and pharmacological characterization of a new class of prolyl-tRNA synthetase inhibitor for anti-fibrosis therapy

Akira Shibata; Masako Kuno; Ryutaro Adachi; Yosuke Sato; Harumi Hattori; Atsushi Matsuda; Yuumi Okuzono; Keiko Igaki; Yusuke Tominari; Terufumi Takagi; Masato Yabuki; Masanori Okaniwa

Scleroderma has clinical characteristics including skin and other tissue fibrosis, but there is an unmet need for anti-fibrotic therapy. Halofuginone (HF) is a well-known anti-fibrosis agent in preclinical and clinical studies which exerts its effect via inhibition of TGF-β/Smad3 signaling pathway. Recently, prolyl-tRNA synthetase (PRS) was elucidated as a target protein for HF that binds to the proline binding site of the catalytic domain of PRS. Here, we characterized a new class of PRS inhibitor (T-3833261) that is carefully designed in a way that binds to the ATP site of the catalytic domain and does not disrupt binding of proline. The anti-fibrotic activity and the mechanism of action for T-3833261 on TGF-β-induced fibrotic assay were compared with those of HF in primary human skin fibroblast. We evaluated in vivo effect of topical application of T-3833261 and HF on TGF-β-induced fibrotic genes expression in mice. We found that T-3833261 suppressed TGF-β-induced α-smooth muscle actin (α-SMA) and type I collagen α1 (COL1A1) expression through the Smad3 axis in a similar fashion to HF. In vivo topical application of T-3833261 reduced the increase of fibrotic genes expression such as α-Sma, Col1a1 and Col1a2 by TGF-β intradermal injection to the ear of a mouse. We revealed that T-3833261 is more effective than HF under the conditions of high proline concentration, as reported in fibrotic tissues. These results suggest the potential of ATP competitive PRS inhibitors for the treatment of fibrotic diseases such as scleroderma.


Biochemical and Biophysical Research Communications | 2016

An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924).

Hiroyuki Sumi; Masakazu Inazuka; Megumi Morimoto; Ryosuke Hibino; Kentaro Hashimoto; Tomoyasu Ishikawa; Keisuke Kuida; Peter G. Smith; Sei Yoshida; Masato Yabuki

Inhibitors of apoptosis proteins (IAPs) are antiapoptotic regulators that block cell death, and are frequently overexpressed in several human cancers, where they facilitate evasion of apoptosis and promote cell survival. IAP antagonists are also known as second mitochondria-derived activator of caspase (SMAC)-mimetics, and have recently been considered as novel therapeutic agents for inducing apoptosis, alone and in combination with other anticancer drugs. In this study, we showed that T-3256336, the orally available IAP antagonist has synergistically enhances the antiproliferative effects of the NEDD8-activating enzyme (NAE) inhibitor pevonedistat (TAK-924/MLN4924), and these effects were attenuated by a TNFα-neutralizing antibody. In the present mechanistic analyses, pevonedistat induced TNFα mRNA and triggered IAP antagonist-dependent extrinsic apoptotic cell death in cancer cell lines. Furthermore, synergistic effects of the combination of T-3256336 and pevonedistat were demonstrated in a HL-60 mouse xenograft model. Our findings provide mechanistic evidence of the effects of IAP antagonists in combination with NAE inhibitors, and demonstrate the potential of a new combination therapy for cancer.


Inflammatory Bowel Diseases | 2018

Gene Signature–Based Approach Identified MEK1/2 as a Potential Target Associated With Relapse After Anti-TNFα Treatment for Crohn’s Disease

Kanae Gamo; Yuumi Okuzono; Masato Yabuki; Takashi Ochi; Kyoko Sugimura; Yosuke Sato; Masaki Sagara; Hiroki Hayashi; Yoshimasa Ishimura; Yutaka Nishimoto; Yusuke Murakawa; Zenyu Shiokawa; Masayuki Gotoh; Takahiro Miyazaki; Yukihiko Ebisuno

Abstract Background Anti–tumor necrosis factor alpha (anti-TNFα) therapy has become the mainstay of therapy for Crohn’s disease (CD). However, post-therapy, the recurrence rate is still high. The aim of this study was to dissect the molecular mechanism for recurrence of CD treated with anti-TNFα therapy and investigate novel therapeutic options that could induce complete remission. Methods We re-analyzed publicly available mucosal gene expression data from CD patients pre– and post–infliximab therapy to extract the transcriptional differences between responders and healthy controls. We used a systematic computational approach based on identified differences to discover novel therapies and validated this prediction through in vitro and in vivo experimentation. Results We identified a set of 3545 anti-TNFα therapy-untreatable genes (TUGs) that are significantly regulated in intestinal epithelial cells, which remain altered during remission. Pathway enrichment analysis of these genes clearly showed excessive growth state and suppressed terminal differentiation, whereas immune components were clearly resolved. Through in silico screening strategy, we observed that MEK inhibitors were predicted to revert expression of genes dysregulated in infliximab responders. In vitro transcriptome analysis demonstrated that selective MEK1/2 inhibitor significantly normalized reference genes from TUGs. In addition, in vitro functional study proved that MEK1/2 inhibitor facilitated intestinal epithelial differentiation. Finally, using murine colitis model, administration of MEK1/2 inhibitor significantly improved diarrhea and histological score. Conclusions Our data revealed the abnormalities in anti-TNFα responders’ CD colons that would be cause of recurrence of CD. Also, we provided evidence regarding MEK1/2 inhibitor as a potential treatment against CD to achieve sustainable remission.

Collaboration


Dive into the Masato Yabuki's collaboration.

Top Co-Authors

Avatar

Sei Yoshida

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomoyasu Ishikawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Sumi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Kentaro Hashimoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masanori Okaniwa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Terufumi Takagi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akihiko Sumita

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shunichirou Tsutsumi

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Takeo Arita

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomohiro Kawamoto

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge