Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Terufumi Takagi is active.

Publication


Featured researches published by Terufumi Takagi.


Journal of Medicinal Chemistry | 2012

Discovery of a Novel Pyrrole Derivative 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine Fumarate (TAK-438) as a Potassium-Competitive Acid Blocker (P-CAB)

Yasuyoshi Arikawa; Haruyuki Nishida; Osamu Kurasawa; Atsushi Hasuoka; Keizo Hirase; Nobuhiro Inatomi; Yasunobu Hori; Jun Matsukawa; Akio Imanishi; Mitsuyo Kondo; Naoki Tarui; Teruki Hamada; Terufumi Takagi; Toshiyuki Takeuchi; Masahiro Kajino

In our pursuit of developing a novel and potent potassium-competitive acid blocker (P-CAB), we synthesized pyrrole derivatives focusing on compounds with low log D and high ligand-lipophilicity efficiency (LLE) values. Among the compounds synthesized, the compound 13e exhibited potent H(+),K(+)-ATPase inhibitory activity and potent gastric acid secretion inhibitory action in vivo. Its maximum efficacy was more potent and its duration of action was much longer than those of proton pump inhibitors (PPIs). Therefore, compound 13e (1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine fumarate, TAK-438) was selected as a drug candidate for the treatment of gastroesophageal reflux disease (GERD), peptic ulcer, and other acid-related diseases.


Bioorganic & Medicinal Chemistry | 2010

Design, synthesis, and evaluation of 5-methyl-4-phenoxy-5H-pyrrolo[3,2-d]pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation.

Yuya Oguro; Naoki Miyamoto; Kengo Okada; Terufumi Takagi; Hidehisa Iwata; Yoshiko Awazu; Hiroshi Miki; Akira Hori; Keiji Kamiyama; Shinichi Imamura

We synthesized a series of pyrrolo[3,2-d]pyrimidine derivatives and evaluated their application as type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase. Incorporation of a diphenylurea moiety at the C4-position of the pyrrolo[3,2-d]pyrimidine core via an oxygen linker resulted in compounds that were potent inhibitors of VEGFR2 kinase. Of these derivatives, compound 20d showed the strongest inhibition of VEGF-stimulated proliferation of human umbilical vein endothelial cells (HUVEC). The co-crystal structure of 20d and VEGFR2 revealed that 20d binds to the inactive form of VEGFR2. Further studies indicated that 20d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited PDGFR and Tie-2 kinases. Oral administration of the hydrochloride salt of 20d at 3mg/kg/day showed potent inhibition of tumor growth in a DU145 human prostate cancer cell xenograft nude mouse model.


Journal of Medicinal Chemistry | 2013

Discovery of a Selective Kinase Inhibitor (TAK-632) Targeting Pan-RAF Inhibition: Design, Synthesis, and Biological Evaluation of C-7-Substituted 1,3-Benzothiazole Derivatives.

Masanori Okaniwa; Masaaki Hirose; Takeo Arita; Masato Yabuki; Akito Nakamura; Terufumi Takagi; Tomohiro Kawamoto; Noriko Uchiyama; Akihiko Sumita; Shunichirou Tsutsumi; Tsuneaki Tottori; Yoshitaka Inui; Bi-Ching Sang; Jason Yano; Kathleen Aertgeerts; Sei Yoshida; Tomoyasu Ishikawa

With the aim of discovering a selective kinase inhibitor targeting pan-RAF kinase inhibition, we designed novel 1,3-benzothiazole derivatives based on our thiazolo[5,4-b]pyridine class RAF/VEGFR2 inhibitor 1 and developed a regioselective cyclization methodology for the C-7-substituted 1,3-benzothiazole scaffold utilizing meta-substituted anilines. Eventually, we selected 7-cyano derivative 8B (TAK-632) as a development candidate and confirmed its binding mode by cocrystal structure with BRAF. Accommodation of the 7-cyano group into the BRAF-selectivity pocket and the 3-(trifluoromethyl)phenyl acetamide moiety into the hydrophobic back pocket of BRAF in the DFG-out conformation contributed to enhanced RAF potency and selectivity vs VEGFR2. Reflecting its potent pan-RAF inhibition and slow off-rate profile, 8B demonstrated significant cellular activity against mutated BRAF or mutated NRAS cancer cell lines. Furthermore, in both A375 (BRAF(V600E)) and HMVII (NRAS(Q61K)) xenograft models in rats, 8B demonstrated regressive antitumor efficacy by twice daily, 14-day repetitive administration without significant body weight loss.


Journal of Medicinal Chemistry | 2012

Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. 1. Exploration of [5,6]-fused bicyclic scaffolds

Masanori Okaniwa; Masaaki Hirose; Takashi Imada; Tomohiro Ohashi; Youko Hayashi; Tohru Miyazaki; Takeo Arita; Masato Yabuki; Kazuyo Kakoi; Juran Kato; Terufumi Takagi; Tomohiro Kawamoto; Shuhei Yao; Akihiko Sumita; Shunichirou Tsutsumi; Tsuneaki Tottori; Hideyuki Oki; Bi-Ching Sang; Jason Yano; Kathleen Aertgeerts; Sei Yoshida; Tomoyasu Ishikawa

To develop RAF/VEGFR2 inhibitors that bind to the inactive DFG-out conformation, we conducted structure-based drug design using the X-ray cocrystal structures of BRAF, starting from an imidazo[1,2-b]pyridazine derivative. We designed various [5,6]-fused bicyclic scaffolds (ring A, 1-6) possessing an anilide group that forms two hydrogen bond interactions with Cys532. Stabilizing the planarity of this anilide and the nitrogen atom on the six-membered ring of the scaffold was critical for enhancing BRAF inhibition. The selected [1,3]thiazolo[5,4-b]pyridine derivative 6d showed potent inhibitory activity in both BRAF and VEGFR2. Solid dispersion formulation of 6d (6d-SD) maximized its oral absorption in rats and showed significant suppression of ERK1/2 phosphorylation in an A375 melanoma xenograft model in rats by single administration. Tumor regression (T/C = -7.0%) in twice-daily repetitive studies at a dose of 50 mg/kg in rats confirmed that 6d is a promising RAF/VEGFR2 inhibitor showing potent anticancer activity.


Bioorganic & Medicinal Chemistry | 2012

Discovery, synthesis, and biological evaluation of novel pyrrole derivatives as highly selective potassium-competitive acid blockers.

Haruyuki Nishida; Atsushi Hasuoka; Yasuyoshi Arikawa; Osamu Kurasawa; Keizo Hirase; Nobuhiro Inatomi; Yasunobu Hori; Fumihiko Sato; Naoki Tarui; Akio Imanishi; Mitsuyo Kondo; Terufumi Takagi; Masahiro Kajino

To discover a gastric antisecretory agent more potent than existing proton pump inhibitors, novel pyrrole derivatives were synthesized, and their H(+),K(+)-ATPase inhibitory activities and inhibitory action on histamine-stimulated gastric acid secretion in rats were evaluated. Among the compounds synthesized, compound 17a exhibited selective and potent H(+),K(+)-ATPase inhibitory activity through reversible and K(+)-competitive ionic binding; furthermore, compound 17c exhibited potent inhibitory action on histamine-stimulated gastric acid secretion in rats and Heidenhain pouch dogs.


Bioorganic & Medicinal Chemistry | 2013

Discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (TAK-593), a highly potent VEGFR2 kinase inhibitor

Naoki Miyamoto; Nozomu Sakai; Takaharu Hirayama; Kazuhiro Miwa; Yuya Oguro; Hideyuki Oki; Kengo Okada; Terufumi Takagi; Hidehisa Iwata; Yoshiko Awazu; Seiji Yamasaki; Toshiyuki Takeuchi; Hiroshi Miki; Akira Hori; Shinichi Imamura

Vascular endothelial growth factor (VEGF) plays important roles in tumor angiogenesis, and the inhibition of its signaling pathway is considered an effective therapeutic option for the treatment of cancer. In this study, we describe the design, synthesis, and biological evaluation of 2-acylamino-6-phenoxy-imidazo[1,2-b]pyridazine derivatives. Hybridization of two distinct imidazo[1,2-b]pyridazines 1 and 2, followed by optimization led to the discovery of N-[5-({2-[(cyclopropylcarbonyl)amino]imidazo[1,2-b]pyridazin-6-yl}oxy)-2-methylphenyl]-1,3-dimethyl-1H-pyrazole-5-carboxamide (23a, TAK-593) as a highly potent VEGF receptor 2 kinase inhibitor with an IC50 value of 0.95 nM. The compound 23a strongly suppressed proliferation of VEGF-stimulated human umbilical vein endothelial cells with an IC50 of 0.30 nM. Kinase selectivity profiling revealed that 23a inhibited platelet-derived growth factor receptor kinases as well as VEGF receptor kinases. Oral administration of 23a at 1 mg/kg bid potently inhibited tumor growth in a mouse xenograft model using human lung adenocarcinoma A549 cells (T/C=8%).


ACS Medicinal Chemistry Letters | 2013

Structure-Based Approach for the Discovery of Pyrrolo[3,2-d]pyrimidine-Based EGFR T790M/L858R Mutant Inhibitors

Satoshi Sogabe; Youichi Kawakita; Shigeru Igaki; Hidehisa Iwata; Hiroshi Miki; Douglas R. Cary; Terufumi Takagi; Shinji Takagi; Yoshikazu Ohta; Tomoyasu Ishikawa

The epidermal growth factor receptor (EGFR) family plays a critical role in vital cellular processes and in various cancers. Known EGFR inhibitors exhibit distinct antitumor responses against the various EGFR mutants associated with nonsmall-cell lung cancer. The L858R mutation enhances clinical sensitivity to gefitinib and erlotinib as compared with wild type and reduces the relative sensitivity to lapatinib. In contrast, the T790M mutation confers drug resistance to gefitinib and erlotinib. We determined crystal structures of the wild-type and T790M/L858R double mutant EGFR kinases with reversible and irreversible pyrrolo[3,2-d]pyrimidine inhibitors based on analogues of TAK-285 and neratinib. In these structures, M790 adopts distinct conformations to accommodate different inhibitors, whereas R858 allows conformational variations of the activation loop. These results provide structural insights for understanding the structure-activity relationships that should contribute to the development of potent inhibitors against drug-sensitive or -resistant EGFR mutations.


Bioorganic & Medicinal Chemistry | 2010

N-Phenyl-N′-[4-(5H-pyrrolo[3,2-d]pyrimidin-4-yloxy)phenyl]ureas as novel inhibitors of VEGFR and FGFR kinases

Yuya Oguro; Naoki Miyamoto; Terufumi Takagi; Kengo Okada; Yoshiko Awazu; Hiroshi Miki; Akira Hori; Keiji Kamiyama; Shinichi Imamura

We have recently reported the discovery of pyrrolo[3,2-d]pyrimidine derivatives 1a and 1b as potent triple inhibitors of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and Tie-2 kinases. To identify compounds having strong inhibitory activity against fibroblast growth factor receptor (FGFR) kinase, further modification was conducted using the co-crystal structure analysis of VEGFR2 and 1b. Among the compounds synthesized, urea derivative 11l having a piperazine moiety on the terminal benzene ring showed strong inhibitory activity against FGFR1 kinase as well as VEGFR2 kinase. A binding model of 11l complexed with VEGFR2 suggested that the piperazine moiety forms additional interactions with Ile1025 and His1026.


Bioorganic & Medicinal Chemistry | 2012

Design, synthesis, and evaluation of imidazo[1,2-b]pyridazine derivatives having a benzamide unit as novel VEGFR2 kinase inhibitors.

Naoki Miyamoto; Yuya Oguro; Terufumi Takagi; Hidehisa Iwata; Hiroshi Miki; Akira Hori; Shinichi Imamura

The vascular endothelial growth factor (VEGF) signaling pathway has been implicated in tumor angiogenesis, and inhibition of the VEGF pathway is considered an efficacious method for treating cancer. Herein, we describe synthetic studies of imidazo[1,2-b]pyridazine derivatives as VEGF receptor 2 (VEGFR2) kinase inhibitors. The imidazo[1,2-b]pyridazine scaffold was designed and synthesized as a hinge binder according to the previously reported crystal structure of pyrrolo[3,2-d]pyrimidine 1 with VEGFR2. Structure-activity relationship studies revealed that meta-substituted 6-phenoxy-imidazo[1,2-b]pyridazine derivatives had potent affinity for VEGFR2. In particular, N-[3-(imidazo[1,2-b]pyridazin-6-yloxy)phenyl]-3-(trifluoromethyl)benzamide (6b) exhibited strong inhibitory activity against VEGFR2 with an IC(50) value of 7.1 nM, and it inhibited platelet-derived growth factor receptor β kinase with an IC(50) value of 15 nM.


ACS Medicinal Chemistry Letters | 2012

A Back-to-Front Fragment-Based Drug Design Search Strategy Targeting the DFG-Out Pocket of Protein Tyrosine Kinases.

Hidehisa Iwata; H Oki; K Okada; Terufumi Takagi; M Tawada; Y Miyazaki; S Imamura; A Hori; J.D Lawson; Mark S. Hixon; H Kimura; H. Miki

We present a straightforward process for the discovery of novel back pocket-binding fragment molecules against protein tyrosine kinases. The approach begins by screening against the nonphosphorylated target kinase with subsequent counterscreening of hits against the phosphorylated enzyme. Back pocket-binding fragments are inactive against the phosphorylated kinase. Fragment molecules are of insufficient size to span both regions of the ATP binding pocket; thus, the outcome is binary (back pocket-binding or hinge-binding). Next, fragments with the appropriate binding profile are assayed in combination with a known hinge-binding fragment and subsequently with a known back pocket-binding fragment. Confirmation of back pocket-binding by Yonetani-Theorell plot analysis progresses candidate fragments to crystallization trials. The method is exemplified by a fragment screening campaign against vascular endothelial growth factor receptor 2, and a novel back pocket-binding fragment is presented.

Collaboration


Dive into the Terufumi Takagi's collaboration.

Top Co-Authors

Avatar

Masanori Okaniwa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masaaki Hirose

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Atsushi Hasuoka

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masahiro Kajino

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomohiro Kawamoto

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Haruyuki Nishida

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Masato Yabuki

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Naoki Tarui

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Tomoyasu Ishikawa

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Akihiko Sumita

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge