Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayoshi Fukasawa is active.

Publication


Featured researches published by Masayoshi Fukasawa.


Nature | 2003

Molecular machinery for non-vesicular trafficking of ceramide

Kentaro Hanada; Keigo Kumagai; Satoshi Yasuda; Yukiko Miura; Miyuki Kawano; Masayoshi Fukasawa; Masahiro Nishijima

Synthesis and sorting of lipids are essential for membrane biogenesis; however, the mechanisms underlying the transport of membrane lipids remain little understood. Ceramide is synthesized at the endoplasmic reticulum and translocated to the Golgi compartment for conversion to sphingomyelin. The main pathway of ceramide transport to the Golgi is genetically impaired in a mammalian mutant cell line, LY-A. Here we identify CERT as the factor defective in LY-A cells. CERT, which is identical to a splicing variant of Goodpasture antigen-binding protein, is a cytoplasmic protein with a phosphatidylinositol-4-monophosphate-binding (PtdIns4P) domain and a putative domain for catalysing lipid transfer. In vitro assays show that this lipid-transfer-catalysing domain specifically extracts ceramide from phospholipid bilayers. CERT expressed in LY-A cells has an amino acid substitution that destroys its PtdIns4P-binding activity, thereby impairing its Golgi-targeting function. We conclude that CERT mediates the intracellular trafficking of ceramide in a non-vesicular manner.


Biochemical and Biophysical Research Communications | 2014

Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP.

Masashi Iwamoto; Koichi Watashi; Senko Tsukuda; Hussein H. Aly; Masayoshi Fukasawa; Akira Fujimoto; Ryosuke Suzuki; Hideki Aizaki; Takayoshi Ito; Osamu Koiwai; Hiroyuki Kusuhara; Takaji Wakita

Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection.


Journal of Virology | 2007

E6AP Ubiquitin Ligase Mediates Ubiquitylation and Degradation of Hepatitis C Virus Core Protein

Masayuki Shirakura; Kyoko Murakami; Tohru Ichimura; Ryosuke Suzuki; Tetsu Shimoji; Kouichirou Fukuda; Katsutoshi Abe; Shigeko Sato; Masayoshi Fukasawa; Yoshio Yamakawa; Masahiro Nishijima; Kohji Moriishi; Yoshiharu Matsuura; Takaji Wakita; Tetsuro Suzuki; Peter M. Howley; Tatsuo Miyamura; Ikuo Shoji

ABSTRACT Hepatitis C virus (HCV) core protein is a major component of viral nucleocapsid and a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis. We previously showed that the HCV core protein is degraded through the ubiquitin-proteasome pathway. However, the molecular machinery for core ubiquitylation is unknown. Using tandem affinity purification, we identified the ubiquitin ligase E6AP as an HCV core-binding protein. E6AP was found to bind to the core protein in vitro and in vivo and promote its degradation in hepatic and nonhepatic cells. Knockdown of endogenous E6AP by RNA interference increased the HCV core protein level. In vitro and in vivo ubiquitylation assays showed that E6AP promotes ubiquitylation of the core protein. Exogenous expression of E6AP decreased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected Huh-7 cells. Furthermore, knockdown of endogenous E6AP by RNA interference increased intracellular core protein levels and supernatant HCV infectivity titers in the HCV JFH1-infected cells. Taken together, our results provide evidence that E6AP mediates ubiquitylation and degradation of HCV core protein. We propose that the E6AP-mediated ubiquitin-proteasome pathway may affect the production of HCV particles through controlling the amounts of viral nucleocapsid protein.


Journal of Biological Chemistry | 2000

Reduction of Sphingomyelin Level without Accumulation of Ceramide in Chinese Hamster Ovary Cells Affects Detergent-resistant Membrane Domains and Enhances Cellular Cholesterol Efflux to Methyl-β-cyclodextrin

Masayoshi Fukasawa; Masahiro Nishijima; Hiroyuki Itabe; Tatsuya Takano; Kentaro Hanada

We examined the effects of reduction of sphingomyelin level on cholesterol behavior in cells using 2 types of Chinese hamster ovary cell mutants deficient in sphingomyelin synthesis: LY-A strain defective in intracellular trafficking of ceramide for sphingomyelin synthesis, and LY-B strain defective in the enzyme catalyzing the initial step of sphingolipid biosynthesis. Although the sphingomyelin content in LY-A and LY-B cells was ∼40 and ∼15%, respectively, of the wild-type level without accumulation of ceramide, these mutant cells were almost identical in cholesterol content and also in plasma membrane cholesterol level to the wild-type cells. However, density gradient fractionation analysis of Triton X-100-treated lysates of cells prelabeled with [3H]cholesterol showed that the [3H]cholesterol level in the low-density floating fraction was lower in sphingomyelin-deficient cells than in wild-type cells. When cells were exposed to methyl-β-cyclodextrin, cholesterol was more efficiently fluxed from sphingomyelin-deficient cells than wild-type cells. These results suggest that the steady state level of cholesterol at the plasma membrane is little affected by the sphingomyelin levels in Chinese hamster ovary cells, but that sphingomyelin levels play an important role in the retention of cholesterol in the plasma membrane against efflux to extracellular cholesterol-acceptors, due to interaction between sphingomyelin and cholesterol in detergent-resistant membrane domains.


PLOS Pathogens | 2011

Hepatitis C Virus Reveals a Novel Early Control in Acute Immune Response

Noëlla Arnaud; Stéphanie Dabo; Daisuke Akazawa; Masayoshi Fukasawa; Fumiko Shinkai-Ouchi; Jacques Hugon; Takaji Wakita; Eliane F. Meurs

Recognition of viral RNA structures by the intracytosolic RNA helicase RIG-I triggers induction of innate immunity. Efficient induction requires RIG-I ubiquitination by the E3 ligase TRIM25, its interaction with the mitochondria-bound MAVS protein, recruitment of TRAF3, IRF3- and NF-κB-kinases and transcription of Interferon (IFN). In addition, IRF3 alone induces some of the Interferon-Stimulated Genes (ISGs), referred to as early ISGs. Infection of hepatocytes with Hepatitis C virus (HCV) results in poor production of IFN despite recognition of the viral RNA by RIG-I but can lead to induction of early ISGs. HCV was shown to inhibit IFN production by cleaving MAVS through its NS3/4A protease and by controlling cellular translation through activation of PKR, an eIF2α-kinase containing dsRNA-binding domains (DRBD). Here, we have identified a third mode of control of IFN induction by HCV. Using HCVcc and the Huh7.25.CD81 cells, we found that HCV controls RIG-I ubiquitination through the di-ubiquitine-like protein ISG15, one of the early ISGs. A transcriptome analysis performed on Huh7.25.CD81 cells silenced or not for PKR and infected with JFH1 revealed that HCV infection leads to induction of 49 PKR-dependent genes, including ISG15 and several early ISGs. Silencing experiments revealed that this novel PKR-dependent pathway involves MAVS, TRAF3 and IRF3 but not RIG-I, and that it does not induce IFN. Use of PKR inhibitors showed that this pathway requires the DRBD but not the kinase activity of PKR. We then demonstrated that PKR interacts with HCV RNA and MAVS prior to RIG-I. In conclusion, HCV recruits PKR early in infection as a sensor to trigger induction of several IRF3-dependent genes. Among those, ISG15 acts to negatively control the RIG-I/MAVS pathway, at the level of RIG-I ubiquitination.These data give novel insights in the machinery involved in the early events of innate immune response.


Journal of Biological Chemistry | 2001

A novel inhibitor of ceramide trafficking from endoplasmic reticulum to the site of sphingomyelin synthesis

Satoshi Yasuda; Hidetoshi Kitagawa; Masaharu Ueno; Haruro Ishitani; Masayoshi Fukasawa; Masahiro Nishijima; Shu Kobayashi; Kentaro Hanada

Ceramide produced at the endoplasmic reticulum (ER) is transported to the lumen of the Golgi apparatus for conversion to sphingomyelin (SM). N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide (HPA-12) is a novel analog of ceramide. Metabolic labeling experiments showed that HPA-12 inhibits conversion of ceramide to SM, but not to glucosylceramide, in Chinese hamster ovary cells. Cultivation of cells with HPA-12 significantly reduced the content of SM. HPA-12 did not inhibit the activity of SM synthase. The inhibition of SM formation by HPA-12 was abrogated when the Golgi apparatus was made to merge with the ER by brefeldin A. Moreover, HPA-12 inhibited redistribution of a fluorescent analog of ceramide, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (C(5)-DMB-Cer), from intracellular membranes to the Golgi region. Among four stereoisomers of the drug, (1R,3S)-HPA-12, [corrected] which resembles natural ceramide stereochemically, was found to be the most active, although (1R,3S)-HPA-12 [corrected] did not affect ER-to-Golgi trafficking of protein. Interestingly, (1R,3S)-HPA-12 [corrected] inhibited conversion of ceramide to SM little in mutant cells defective in an ATP- and cytosol-dependent pathway of ceramide transport. These results indicated that (1R,3S)-HPA-12 [corrected] inhibits ceramide trafficking from the ER to the site of SM synthesis, possibly due to an antagonistic interaction with a ceramide-recognizing factor(s) involved in the ATP- and cytosol-dependent pathway.


Biochemical Journal | 2000

Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum

Kentaro Hanada; Toshihide Mitamura; Masayoshi Fukasawa; Pamela A. Magistrado; Toshihiro Horii; Masahiro Nishijima

Sphingolipid metabolism and metabolites are important in various cellular events in eukaryotes. However, little is known about their function in plasmodial parasites. Here we demonstrate that neutral sphingomyelinase (SMase) involved in the sphingomyelin (SM) catabolism is retained by the intraerythrocytic parasite Plasmodium falciparum. When assayed in a neutral pH buffer supplemented with Mg(2+) and phosphatidylserine, an activity for the release of the phosphocholine group from SM was detected in parasite-infected, but not in uninfected, erythrocyte ghosts. The SMase activity in the parasite-infected erythrocyte ghosts was enhanced markedly by anionic phospholipids including unsaturated but not saturated phosphatidylserine. Mn(2+) could not substitute for Mg(2+) to activate SMase in parasite-infected erythrocyte ghosts, whereas both Mn(2+) and Mg(2+) activated mammalian neutral SMase. The specific activity level of SMase was higher in isolated parasites than in infected erythrocyte ghosts; further fractionation of lysates of the isolated parasites showed that the activity was bound largely to the membrane fraction of the parasites. The plasmodial SMase seemed not to hydrolyse phosphatidylcholine or phosphatidylinositol. The plasmodial SMase, but not SM synthase, was sensitive to scyphostatin, an inhibitor of mammalian neutral SMase, indicating that the plasmodial activities for SM hydrolysis and SM synthesis are mediated by different catalysts. Our finding that the malaria parasites possess SMase activity might explain why the parasites seem to have an SM synthase activity but no activity to synthesize ceramide de novo.


Journal of Biological Chemistry | 2000

Reconstitution of ATP- and cytosol-dependent transport of de novo synthesized ceramide to the site of sphingomyelin synthesis in semi-intact cells.

Tomoko Funakoshi; Satoshi Yasuda; Masayoshi Fukasawa; Masahiro Nishijima; Kentaro Hanada

Transport of ceramide synthesized at the endoplasmic reticulum to the Golgi compartment, where sphingomyelin (SM) synthase exists, was reconstituted within semi-intact Chinese hamster ovary cells. When [3H]ceramide that had been produced from [3H]sphingosine at 15 °C in perforated cells was chased at 37 °C, [3H]ceramide-to-[3H]SM conversion occurred in a cytosol-dependent manner. In various aspects (i.e. kinetics, ATP dependence, and temperature dependence), [3H]ceramide-to-[3H]SM conversion in perforated cells was consistent with that in intact cells. The cytosol from LY-A strain, a Chinese hamster ovary cell mutant defective in endoplasmic reticulum-to-Golgi transport of ceramide, did not support [3H]ceramide-to-[3H]SM conversion in perforated wild-type cells, whereas the wild-type cytosol rescued the conversion in perforated LY-A cells. Brefeldin A-treated cells, in which the endoplasmic reticulum and the Golgi apparatus were merged, no longer required cytosol for conversion of [3H]ceramide to [3H]SM. These results indicated that the assay of [3H]ceramide-to-[3H]SM conversion in semi-intact cells is a faithful in vitro assay for the activity of cytosol-dependent transport of ceramide and that LY-A cells are defective in a cytosolic factor involved in ceramide transport. In addition, conversion of [3H]ceramide to [3H]glucosylceramide in semi-intact cells was little dependent on cytosol, suggesting that ceramide reached the site of glucosylceramide synthesis by a cytosol-independent (or less dependent) pathway.


Traffic | 2010

Exit of GPI-Anchored Proteins from the ER Differs in Yeast and Mammalian Cells

Anne-Sophie Rivier; Guillaume A. Castillon; Laetitia Michon; Masayoshi Fukasawa; Maria Romanova-Michaelides; Nina Jaensch; Kentaro Hanada; Reika Watanabe

Previous studies have shown that yeast glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI‐APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI‐APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER‐to‐Golgi transport of GPI‐APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI‐APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI‐APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI‐APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.


Journal of Virology | 2015

Monoclonal Antibodies against Extracellular Domains of Claudin-1 Block Hepatitis C Virus Infection in a Mouse Model

Masayoshi Fukasawa; Shotaro Nagase; Yoshitaka Shirasago; Manami Iida; Mayo Yamashita; Kohki Endo; Kiyohito Yagi; Tetsuro Suzuki; Takaji Wakita; Kentaro Hanada; Hiroki Kuniyasu; Masuo Kondoh

ABSTRACT Hepatitis C virus (HCV) entry into host cells is a complex process requiring multiple host factors, including claudin-1 (CLDN1). Safe and effective therapeutic entry inhibitors need to be developed. We isolated a human hepatic Huh7.5.1-derived cell mutant that is nonpermissive to HCV, and comparative microarray analysis showed that the mutant was CLDN1 defective. Four hybridomas were obtained, which produced monoclonal antibodies (MAbs) that interacted with the parental Huh7.5.1 cell but not with the CLDN1-defective mutant. All MAbs produced by these hybridomas specifically bound to human CLDN1 with a very high affinity and prevented HCV infection of Huh7.5.1 cells in a dose-dependent manner, without apparent cytotoxicity. Two selected MAbs also inhibited HCV infection of human liver-chimeric mice without significant adverse effects. CLDN1 may be a potential target to prevent HCV infection in vivo. Anti-CLDN1 MAbs may hence be promising candidates as novel anti-HCV agents. IMPORTANCE Safe and effective therapeutic entry inhibitors against hepatitis C virus (HCV) are very useful for combination therapies with other anti-HCV drugs, such as direct-acting antivirals. In this study, we first showed an effective strategy for developing functional monoclonal antibodies (MAbs) against extracellular domains of a multimembrane-spanning target protein, claudin-1 (CLDN1), by using parental cells expressing the intact target membrane protein and target-defective cells. The established MAbs against CLDN1, which had a very high affinity for intact CLDN1, efficiently inhibited in vitro and in vivo HCV infections. These anti-CLDN1 MAbs are promising leads for novel entry inhibitors against HCV.

Collaboration


Dive into the Masayoshi Fukasawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kentaro Hanada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaji Wakita

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yoshitaka Shirasago

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiro Nishijima

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge