Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Kurose is active.

Publication


Featured researches published by Masayuki Kurose.


Brain Research | 2004

Activity of peri-oral facial muscles and its coordination with jaw muscles during ingestive behavior in awake rabbits.

Sachiko Ootaki; Kensuke Yamamura; Makoto Inoue; Jayantha Amarasena; Masayuki Kurose; Yoshiaki Yamada

To study peri-oral facial muscle activity patterns and coordination with jaw muscles during ingestive behavior, electromyographic (EMG) activities in the peri-oral facial (buccinator: BUC, orbicularis oris: ORB) and jaw (masseter, digastric) muscles along with jaw movement trajectories were recorded in awake rabbits. A standardized amount of apple in a cylindrical shape was used as the test food. The period from food intake to just before swallowing (the masticatory sequence) was divided into three masticatory periods (preparatory period, rhythmic chewing period and preswallow period) based on the activity pattern of jaw muscles and jaw movement trajectories, and jaw movements and EMG activities in both the jaw and facial muscles during each masticatory period were assessed. Both the jaw and facial muscles were active throughout the masticatory sequence, and the activity patterns of facial muscles and the pattern of coordination between the facial and jaw muscles varied for each masticatory period. No consistent pattern was noted for the BUC activity during the preparatory period, whereas the ORB showed tonic activity throughout this period. During the rhythmic chewing and preswallow periods, both the ORB and BUC showed jaw-movement-related rhythmic bursts. However, significant differences were noted in the burst properties in both facial muscles and their temporal correlations with the jaw muscle activities between these two periods. Results suggest that the neural mechanisms regulating facial muscle activities may differ between the masticatory periods, and such mechanisms may contribute to the well-coordinated orofacial movements required for smooth masticatory sequence.


Brain Research | 2004

Coordination of jaw and extrinsic tongue muscle activity during rhythmic jaw movements in anesthetized rabbits.

Sajjiv Ariyasinghe; Makoto Inoue; Kensuke Yamamura; Yohji Harasawa; Masayuki Kurose; Yoshiaki Yamada

To clarify the jaw-closer and tongue-retractor muscle activity patterns during mastication, electromyographic activity of the styloglossus (SG) as a tongue-retractor and masseter (Mass) as a jaw-closer muscles as well as jaw-movement trajectories were recorded during cortically evoked rhythmic jaw movements (CRJMs) in anesthetized rabbits. The SG and Mass muscles were mainly active during the jaw-closing (Cl) phase. The SG activity was composed of two bursts in one masticatory cycle; one had its peak during the jaw-opening (Op) phase (SG1 burst) and the other during the Cl phase (SG2 burst). The Mass activity during the Cl phase was dominant on the working side (opposite to the stimulating side) while the SG1 and SG2 bursts were not different between the sides. When the wooden stick was inserted between the molar teeth on the working side during CRJMs, the facilitatory effects on the SG1 and SG2 bursts on both sides were noted as well as those on the Mass bursts, but the effects on the SG1 burst seemed to be weak as compared with those on the Mass and SG2 bursts. The difference in the burst timing between the sides was noted only in the SG1 burst. When the trigeminal nerves were blocked, the peak and area of the SG and Mass burst decreased during CRJMs, and the facilitatory effects of the wooden stick application on the muscles were not noted. The results suggest that the jaw and tongue muscle activities may be adjusted to chew the food and make the food bolus.


Investigative Ophthalmology & Visual Science | 2015

Corneal sensitivity following lacrimal gland excision in the rat.

Ian D. Meng; Stephen Barton; Neal Mecum; Masayuki Kurose

PURPOSE Dry eye disease (DED) produces ocular pain and irritation, yet a detailed characterization of ocular sensitivity in a preclinical model of DED is lacking. The aim of the present study was to assess nociceptive behaviors in an aqueous tear deficiency model of DED in the rat. METHODS Spontaneous blinking, corneal mechanical thresholds, and eye wipe behaviors elicited by hypertonic saline (5.0 M) were examined over a period of 8 weeks following the unilateral excision of either the exorbital lacrimal gland or of the exorbital and infraorbital lacrimal glands, and in sham surgery controls. The effect of topical proparacaine on spontaneous blinking and of systemic morphine (0.5-3.0 mg/kg, subcutaneous [SC]) on spontaneous blinking and eye wipe responses were also examined. RESULTS Lacrimal gland excision resulted in mechanical hypersensitivity and an increase in spontaneous blinking in the ipsilateral eye over an 8-week period that was more pronounced after infra- and exorbital gland excision. The time spent eye wiping was also enhanced in response to hypertonic saline (5.0 M) at both 1- and 8-week time-points, but only in infra- and exorbital gland excised animals. Morphine attenuated spontaneous blinking, and the response to hypertonic saline in dry eye animals and topical proparacaine application reduced spontaneous blinking down to control levels. CONCLUSIONS These results indicate that aqueous tear deficiency produces hypersensitivity in the rat cornea. In addition, the increase in spontaneous blinks and their reduction by morphine and topical anesthesia indicate the presence of persistent irritation elicited by the activation of corneal nociceptors.


Brain Research Bulletin | 2010

Modulation of spindle discharge from jaw-closing muscles during chewing foods of different hardness in awake rabbits.

Hossain Md. Zakir; Junichi Kitagawa; Yoshiaki Yamada; Masayuki Kurose; Rahman Md. Mostafeezur; Kensuke Yamamura

The relationships between jaw-closing muscle spindle unit discharge and the hardness of foods were evaluated during chewing in awake rabbits. Spindle unit discharges recorded from the left mesencephalic trigeminal nucleus were correlated with the simultaneous recording of jaw movements and electromyographic (EMG) activities of the left masseter (jaw-closing) muscle during chewing soft and hard foods. A chewing cycle was divided into the fast-closing (FC), slow-closing (SC) and opening (OP) phases according to jaw movements. The chewing was classified as ipsilateral and contralateral chewing according to ipsilateral and contralateral to the recording side of the neuron, respectively. Spindle unit discharge was significantly higher during the FC and SC phases of the hard food than the soft food during both ipsilateral and contralateral chewing. The discharge was observed to be higher when the masseter muscle activity was higher. A comparison between the chewing sides reveals that the discharge was significantly higher during the slow-closing phase of ipsilateral chewing than contralateral chewing. From the above findings, the relationship of the spindle unit discharge with the hardness of foods was observed. Moreover, this relationship exists even when an animal chews food on the contralateral side suggesting the significance of the muscle spindle information for smooth chewing. In addition, the phase dependent difference of the spindle unit discharge between chewing sides suggests the distinct roles of the spindle information on the chewing and non-chewing sides.


Odontology | 2008

Difference in physiological responses to sound stimulation in subjects with and without fear of dental treatments

Takumu Kudo; Riho Mishima; Kensuke Yamamura; Rahman Md. Mostafeezur; Hossain Md. Zakir; Masayuki Kurose; Yoshiaki Yamada

The effects of sound generated by an ultrasonic dental scaler and a dental turbine on heart rate, systolic and diastolic blood pressure, and hemodynamic changes in the frontal cortex were measured and compared with those of pure tone stimulation in 17 young volunteers. Near-infrared spectroscopy and the Finapres technique were used to measure hemodynamic and cardiovascular responses, respectively. The dental sound changed the various physiological parameters. To determine if this change was related to participants’ previous experiences with dental treatment, participants were divided into two groups: those who had a previous unpleasant experience with dental treatment and those who had not. Participants with previous unpleasant dental experiences showed a significant decrease in cerebral blood flow. Participants who had not had an unpleasant dental experience did not show significant changes in cerebral blood flow. Thus, although sounds associated with dental treatment may reduce cerebral blood flow, this effect may depend on the dental experiences of the patient. It is recommended that dentists treat patients gently and with empathy to promote a friendly image of dentistry.


Brain Research | 2009

Mastication-induced modulation of the jaw-opening reflex during different periods of mastication in awake rabbits.

Rahman Md. Mostafeezur; Kensuke Yamamura; Masayuki Kurose; Yoshiaki Yamada

The present study aimed to determine if sensory inputs from the intraoral mechanoreceptors similarly contributed to regulating the activity of the jaw-opening muscles throughout the masticatory sequence. We also aimed to determine if sensory inputs from the chewing and non-chewing sides equally regulated the activity of the jaw-opening muscles. Electromyographic (EMG) activities of jaw muscles (digastric and masseter) and jaw movements were recorded in awake rabbits. The entire masticatory sequence was divided into preparatory, rhythmic-chewing and preswallow periods, based on jaw muscles activity and jaw movements. The jaw-opening reflex (JOR) was evoked by unilateral low-intensity stimulation of the inferior alveolar nerve (IAN) on either the chewing or non-chewing side. Amplitude of the JOR was assessed by measuring peak-to-peak EMG activity in the digastric muscle, and was compared among the masticatory periods and between the chewing and non-chewing sides. The JOR was strongly suppressed during the jaw-closing phase in the rhythmic-chewing and preswallow periods, but this effect was transiently attenuated during the late part of the jaw-opening phase in these periods. However, modulation of the JOR varied from strong suppression to weak facilitation during the preparatory period. The patterns of JOR modulation were similar on the chewing and non-chewing sides in all masticatory periods. The results suggest that the sensory inputs from the intraoral mechanoreceptors regulate the activity of the jaw-opening muscles differently during the preparatory period compared with the other masticatory periods. Sensory inputs from both the chewing and non-chewing sides similarly regulate the activity of the jaw-opening muscles.


Brain Research | 2005

Modulation of jaw reflexes induced by noxious stimulation to the muscle in anesthetized rats

Masayuki Kurose; Kensuke Yamamura; Makiko Noguchi; Makoto Inoue; Sachiko Ootaki; Yoshiaki Yamada

Previous studies have shown that jaw reflexes and activity patterns of the jaw muscles were modulated in the presence of jaw muscle pain. However, there is no study comparing the modulatory effects on the jaw reflexes induced by noxious stimulation to the jaw muscle. To clarify this, effects of the application of mustard oil (MO), an inflammatory irritant, into the temporalis (jaw-closing) muscle on (1) jaw-opening reflex evoked by tooth pulp stimulation (TP-evoked JOR) as a nociceptive reflex, (2) jaw-opening reflex evoked by inferior alveolar nerve stimulation as a non-nociceptive reflex and (3) jaw-closing reflex evoked by trigeminal mesencephalic nucleus stimulation as a proprioceptive reflex were investigated in anesthetized rats. The MO application induced suppression of all reflexes, and the effect on the TP-evoked JOR was more prominent than on the other reflexes. To elucidate the involvement of endogenous opioid system for the suppressive effect, a systemic administration of naloxone following the MO application was conducted. The MO-induced suppressive effect on the TP-evoked JOR was reversed by the naloxone administration. The results suggest that noxious stimulation to the jaw muscle modulate jaw reflexes particularly for the nociceptive jaw-opening reflex, and the modulatory effect includes both facilitatory and inhibitory aspects. The results also suggest that pain modulatory systems such as the endogenous opioid system play a crucial role in the suppression of the nociceptive transmissions related to nociceptive reflexes, and in some pathological states, defense reflexes may not be evoked properly.


Brain Research | 2010

Attenuation of cannabinoid-induced inhibition of medullary dorsal horn neurons by a kappa-opioid receptor antagonist

Akiko Okada-Ogawa; Masayuki Kurose; Ian D. Meng

The kappa-opioid receptor (KOR) antagonist norbinaltorphimine (nor-BNI) attenuates behavioral antinociception produced by spinal administration of the cannabinoid receptor agonist delta-9-tetrahydorcannabinol (THC). The present study examined the ability of nor-BNI to prevent cannabinoid-induced inhibition of medullary dorsal horn (MDH) nociceptive neurons and antinociception produced by the cannabinoid agonist WIN 55,212-2 (WIN-2). Extracellular, single-unit recordings of lamina I and lamina V MDH neurons were performed in urethane anesthetized rats. Heat-evoked activity was measured before and after local brainstem application of nor-BNI or vehicle followed by WIN-2. In both lamina I and lamina V neurons, prior application of nor-BNI prevented the inhibition of heat-evoked activity by WIN-2. In separate experiments, the contribution of KOR to cannabinoid-induced increases in heat-evoked head withdrawal latencies was assessed in lightly urethane-anesthetized rats. Antinociception produced by intrathecal administration of WIN-2 and THC was attenuated by prior administration of nor-BNI. In contrast, antinociception produced by the cannabinoid CP55940 remained unaffected by prior administration of nor-BNI. These results indicate that cannabinoid inhibition of nociceptive reflexes produced by WIN-2 and THC may result from inhibition of dorsal horn neurons through a KOR-dependent mechanism.


Brain Research Bulletin | 2005

Unilateral application of an inflammatory irritant to the rat temporomandibular joint region produces bilateral modulation of the jaw-opening reflex

Makiko Noguchi; Masayuki Kurose; Kensuke Yamamura; Makoto Inoue; Yo Taguchi; Barry J. Sessle; Yoshiaki Yamada

The aim of this study was to determine the effect of unilateral acute inflammation of craniofacial deep tissues on the ipsilateral and contralateral jaw-opening reflex (JOR). The effects of mustard oil (MO), injected into the temporomandibular joint region, were tested on the JOR recorded in the digastric muscle and evoked by low-intensity electrical stimulation of the ipsilateral and contralateral inferior alveolar nerve in anesthetized rats. The MO injection induced a long-lasting suppression of the amplitude of both ipsilaterally and contralaterally evoked JOR, although the latency and duration of the JOR were unaffected. The suppressive effect was more prominent for the contralaterally evoked JOR, and observed even when background activity in the digastric muscle was increased by the MO injection. The results indicate that changes in the JOR amplitude following MO injection do not simply reflect alterations in motoneuronal excitability, and suggest that inflammation of deep craniofacial tissues modulates low-threshold sensory transmission to the motoneurons.


Journal of Oral Rehabilitation | 2017

Application of a barometer for assessment of oral functions: Donders space

Keisuke Hiraki; Yoshiaki Yamada; Masayuki Kurose; Wataru Ofusa; Tetsuya Sugiyama; Ryo Ishida

We developed a barometer applicable to a small space, to assess oral and pharyngeal functions. Negative oral pressure during rest and pressure changes during swallowing were measured in a space between the palate and tongue (STP). Twenty volunteers were asked to sit in a chair in a relaxed upright position. A sensor was placed on the posterior midline of hard palate. Recording commenced just before subjects closed their lips and continued. Subjects were asked to swallow saliva and keep the apposition. Finally, subjects were asked to open their mouth. Recordings were performed five times, and 5 s of continuous data in each phase was averaged. To verify the reliability of the system, the same procedure was accomplished with twin sensors. When the jaw and lips were closed, the pressure slightly decreased from atmospheric pressure (-0·17 ± 0·24-kPa). After swallowing, the pressure in STP showed more negative value (-0·50 ± 0·59-kPa). There is a significant difference between the values in open condition and after swallowing (P < 0·001) and between values after swallowing and final open condition (P < 0·05). Twin sensor showed almost the same trajectories of pressure changes for all the recordings. Obtained negative pressure might generate about 0·71-N of force and would be enough to keep the tongue in the palatal fossa at rest. The system detected large negative/positive pressure changes during swallowing. We conclude this system may be a tool to evaluate oral functions.

Collaboration


Dive into the Masayuki Kurose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge